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PREFACE(

’
»

The main purpose of this book is to provide background
) material in ge6metry for teachers or prospective teachers who
know little or no geometry. It is designed for use in courses

and in service type training programs for teachers at the Junior

' high school or upper elementary levél. It< should be suitable
°as a text for a one—semest%} freshman college course for
/ , ’ a /‘ ‘ ’ . .
prospective teayhers at such level. This book is not designed

to train~$eachers to handle 'SMSG tenth grade geometry but it
might be used.for background information and points of - -view.

Volume II of this series,is designed with the teath grade course
in mind. . . ’ . . . '
A . .

If this text is used for in service progra%s for upper '
elementary teachers, then some selectivity of subJect matter .
}woulu be called for. Chapters 1-8 probably should be used
‘with some sections of Chaptgrs 7 and 8 taken lightly:. The

"proofs" in Chapters 9 and 10 might He omitted. The'elementary
portions of Chapters 11y 12, and 13 might well be used. Chapter %,

ow o

~
T 4 is primarily intended for Junior high school teachers ‘who

- 2.

will be using SMSG materials, N ' o :

o

There will Dpe considerable review of geometric ideas but

f
the review will be phrased partly in terms of present day set"

7
‘
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language. Where possible angd appropriate, both traditional

language and set language will‘%e used to*clarify each other

It i§ not intended tH&t/this book glive a complete review

L -

. on cover 211 details mentioned .in the experimental SMSG Junior _(/
high school texts It'{s"intended that this book stress basic
understandings of ideas, concepts and points-of- view In,
particular, emphasis is put on the interrelationships between
the concepts of and use of measurement congruence, the ‘real

¥ number system and various geométric systemg. fThe author hopes

that tne broad outlines of, good’ mathematlcal developments will

come through, K ~ . ,

°

' -

Elear—cut def nitlons énd explicit assumptions are made
where increased unoerstanding will result, But the author: has‘u
#ried to keep in mind sthat this is not a treatise on abstract"
geometry‘ Ihe 1ntuit1vedhnd informal approach is emphasized

¢ . . v e

throughout »

.,

One bedy- of material that has<been omitted from this boow
!
is that dealing With sets of concurrent lines associated wiﬂ1ll

triangles mEdians, angle bisectors, ete. Some people

teaching rOm this, volume may want to use such material(}
Special progects or the liké . SN . &~

r",

studying this material one should Jhave a pencil and

p&per handy agd be prepared to draw figuresvto help>understand )

r)*

°ﬁhe deVelo§Ments. The reading of mathematics is not like the




'purpos§s suggeste&~abbve

reading of novels. One may have to read the'matfrial several
‘ EY

times to understand it, Some prefer a "1ight" reading of a

section o’ chapter to get géneral ideas before detaiied stuﬁy.
ﬁhe author/and’SMSG will appneciate suggesbions regarding

the suitabibib& or non- suitability of this volume .for khe Do

It i% the intention that this volume

be later reorodaced in revised form,

Suggestions concerning

~ 3 -

the révision are weIcomed and should .be sent to . <
. tr . " . '&?( -

) s

\ ' School Mathematics Study Group
D{awer 25024, Yale Station
N

R - w Haven, Connecticut. . N
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- - . - Chapter 1.

Introduction ' )

.
’

. Geometry is~concerned with the study of spatial relationships.
This* study, of courSe; includes what is usually called "plane
 geometry" for a plaﬁe (a flat surface) is regarded as 4 part of '
space. Traditional tenth grade geometry is more than simply a ﬁ%l(

study of spatial or planar relationships; it is the setting for the .
——

. . tdevelopment of a mathematical logical or axiomatic. system.

—~
Padl

_ #=% In the SMSG materials, the geometry which is found ‘imr the#”

@e | .
Junior High 'School texts is intuitive geometry, the development of

Idp

’

geometric (Spatial) points of view and thought and the understanding

—

} { spatial relationships. It is not axiomatic as such. . Questions

°

A

of informal -deduction naturally arise andowhere appropriate are

v N ¢

- dealt with by- informal argumentsT . ;

In the past, geometry has. been a vehicle for teaching accuracy
of language; expression and thought. To "some extent the 7th and
8th grade geometré 1s dedicated to this end In particular, set,
language simplifies mathematical vocabulary and at the same time

‘forces both considerable precision of expression and emphasis on , ,

.

. the meanings of concepts. Traditional Euclidean geometry went part

way+in this direction. The SMSG materials (both Junior High an

)

I At ateat




10th grade) go considerably farther in making clear cut definitions
and in making some distinctions which were only implicit in Euclid.

The consistent use of set language ,in geometry has three
other important values to the student. First, the set point—of—’
viem is of fundamental importance in much of present day mathe-
matics and an appreciation of it helps produce a certain amount
of mathematical maturity. Sechd, set language itself gives
students a unifying thread which runs through much of their mathe-
matical studies. No longer will it be true that students view 9th
grade,algebra and 10th gradg gegmetry as essentially unrelated
subjects. Third, use of set language actually should make many-
ideas of mathematics substantially easier to grasp for thé studpnt.
Set language simplifies rather than complicates. It frequently

t’.iorces attention on the proper’ concept. o, ’ 'S

It should be\ﬁointed out) however, that the set point-of-view
is no panacea by itseif. Mathematies nill remain a very sub- ‘
stantial subject., Furthermere, it is not proposed by ShSG (or

almost anybody else) that set theory as such be taught to high

L

school students. It 1s proposed that the language of séts"SeTused.

Kl

The language of sets is rather strailghtforward and simple——pnce you

get on to it--but thee subject of set theory gets déep and delicate:

. rather quickly. Set theory itself should probably be 1ert to

‘professional mathematicians or to’ thése who are. thinking’seriously

Lo B
2 f P ~ae A
. ————

of’becoming such.
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Let us illustrate some of the ambiguity in traditional
ternipology and notati\o'nﬂnd our attempts at eliminating 1it.

One of the often remembered properties of Euclidean geometry
is that “a straight line 1is the shortest distance between two :
points". Now, really,'there are at least three different eonzepts .
which are confused in this sta\ement. We discuss these concepts.

61) straight line is usually thought of as a set of points
(the set or collection of points on it). For any two points there
i8 exactly oner straight line containing them (1:3., two distinct
points determine a straight line).

The séraight line containing A and Qf

‘Ei contains some points (%ike P) between )
A and .B and some points (Xiké Q) not®
between A° and B. We shall denote the
'11né™AB by AB. A straight line as skch
does not have ;ength—-it can not be measured. ‘
(2) A segment 18 a part of a straight line. In'particular,
the segment AB {denoted AB) is the set of points consisting of A
and .B and all points betweeh A and B. A segment has length
--1t can be meesureg. The length of AB, is denoted by AB’or some-

Y 1 . ‘ v
times by m(AB). ‘ {

4 v
(3) A distance 1s a number (or a number of units). In

¥

geometry, for any two points Lhere is a istance between them

--the distance being the lehgth of the s gment Joining them.‘

N . ‘,

)

11,
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/7 i . .
Whatever is customarily meant by straight line--and geometry books
are vague on this--a straight line is not a distance. .

[

The statenient "A straight line is the shortest distance

3
v

hetweenltwo“points", then, confuses the concepts of straight line,L“
segment, &nd distance. howevér, the statement does communicate
sgmething of what 1s'intended. But simpler and more precise
language would make for greater clarity. We could sa& A segment-
is the shortest path between two points", This statement is an
- imorovement on the earlier. It would be better, however, if we
had defined or explained the meaningoof the word "path'. fm
. Chapter 9, the "triangle inequality" property does clarify the
meaning of the‘ 'shortest distance"/statement. In other chapters
©of the Hook,'éonsiderations.of the type suggested here will be
- greatl& amplified. . )
' Having made the observation that terms used in mathematics
“8hould have explicit 'and clear-cut meanings, we agree that we:
cannot achieve perfection in this respect. 1In barticular, there
are several terms which are consistently used with dual meanings

! )
but ‘for which the particular meaning intended 1is almost always

clear.’ Examples of such terms are - “"padtus" of a circle which méans
a number (us#ally) but sometimeszé»set of points, "gide" of a

triangle or polygon which meahs either a number or a set of points |
and '%ase"and "sltitude" of a figure which ‘also have similar dual
meanings.  These words are so wide}y used and well understood that

it seems inadvisable to insist on one meaningQQr the otherk

¢
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Chapter:2 -

v
-

1. ferminologz._ ~
.One of the important ideas of.mathenéticslis’thet of "se%."
Synonyms for . thé nord "set" are "collectlonﬁ, "ramily", and
"aggregate." éhe term "set" is used 1n méthematics.in much the

.

same sense as it 1is occasIonally used 1n ordinary language. In

-

-geometry we Speak of a line as a set of points. Or we may, spegk
of the set of all lines which contain a given point. In arith-

. m

*w>met1c, W% speak of the set of all positive evenihole numbers,

that is, 25 }t ﬁ?w ete. s ‘_ TN o

. In everyday language, we talk about the set (or collection)

8
of books in ghe city library, the set of pupils in the seventh

grade of a school, or thé set of all red-headed children less than-

‘two yea¥s of age. . ° S Lo ) .

) In order for a set to be deflned or understood,‘there must

be some clear-cut'criterion for deciding whether ani'particular

" object is in‘the set or is not in, the set. We speak of the o,
obJects in a given set as the "elements" op "members of the set.
FOr 1nstance, consider the'set of pypils in the seventh grade of

West Junior High‘School. An ogjectfisr;n element*of this set’'if -

(and only if) the obJect is registered as a seventh grade student

T

“nw__*lin.Wesh“Junior High School. Therefore, we can tell whether a .

" given object s in the set.,
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2.2
é 3 T .
Tt is useful to let symbols denote sets.
. .
?

quently use capital letters for this punpose. ‘ghus, when,con—

Notation, We fre-.

venient, we magﬂlet "A" be the'set'of all positiveleveh whole

- numbers, or, "M" be the set -of all grade school éhildren who can

. ] .
swim. Braces, { ), %are frequently used in describing sets. Thus

-

[Mary, James, William] describes the set B whose elements are

 Mary, James and William. orCc'= (1, 3, 5, 7, 9}F describes the set

of odd counting numbers less than ten., ' Note that in.each of “these

_tatter cases we have actually enumerated the elements of the set

B or C. VWe. use'three dats to suggest "and-so on".,, For example,

°

4
’

the‘%et A of positive even whole numbers/is sometimes written
A_[2 B, 6, ..o ).

In set notation as in other mathematics we use the symbo
o
(quals or s [equal_to)

- en

.

1 |('~.=n .

an "1s 'the same as." Note that above,

William} are different names for the same set.

lates

is an:

-

: Subsets, ‘Let Y be the set of states of the. United Stat

which contain cities eadt of the Miss*ssippi. Let Z be the
It "
which were the original 13 States.

We say, tﬁat Z is & subset of ¥ (or Z is cong;ined

- -3
We may write 7Y and we read ’it "Z is contained in Y."

@ -
We may also say'Y Contains Z, or Y:)Z.

Then évery element of Z

Velement of Y.

Notiﬁe that the open part
of the symbolCor D is toward the set 'which contains the other as

d 'subset.

- f( :7“"

-

Il
J

L)

@
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In general the set R is a subset of the.set T if each '

'd

element of R is a.n element of T. _We‘may observé\that each set is

’. & subset ‘of itself; in notation, if X‘is:.a'.ny set; XCX (X is con- .
tained in X). .. . ‘ N
Let U be the set of all classrooms in your school. Let V be
‘the* set of all-'classroorr‘xs in your school with women teachers.
Then VCU, i.e., eagh element of V is an“element of U. If your
- school has no ien teache}'s, then also UCV, 1;.?., each elemeng: )

*

of U is an element of V. In this case, V = U. ‘In general we can

- say that if A(Qis a sefi and ‘B 1s & set] and ‘iffAC'B;KBCA then

A = B il.e., and Bp.re simply different names f3r the same set,

Intersec"cions of Sets. Let G be the set of all girls who are
pupils in your school. Let R be the s%t of{l red-headed people
in the world. Let W be the set of all re&-heade.d girls in your_‘

i school. Then W is a“'subset of R a;\d also of G, In fact, W

\\
consists exactly of those elements which are in R and are also in

. G. We speak of the set‘w as 'the intersection of the sets R and G »l' -
. and, in notation, we write W= - RNG. The symbol "N" is called
the intersection sy'mbol We read RﬂG as "R intersection ¢" or
"the intersection of R and G. ‘ ' _ :
Le«t A ‘be the set of all paesitive whole n}imbers. Let B be theg_.\
set of all real numbers less than 8. Then AMB .is the set of all:

- rumbers which are in A-and are alss in B. In other words, ANB is

1

-




(2)

Clearly then

- 2.4 s
. [ 2
© the set of all objeéts which, are . ' . -
(1) positive wh;le numbers and .
numbers less than 8. : Ve ’
ANE - (1, 2, 3, 4 5,6, 7). - ., -

Definition.

-

If X #nd Y abe sets,

then the intersection of X

and Y (in notation XNY) is the set of all elements egch of which

1q an element of X and is an element of Y.

To determine whether an object"IE in Xf\Y is simple:

!

the

.

object must be in X and must also be in' Y.

»

Where appropriate,

-

answers.,

D
Exercises 2-1

N

%

-

-
»

S

-

use brace notation to write oug yéugﬁ

: %

N 3

1. ‘Let X be the set of letters of the alphabet which" preeede .

" Let Y belthe set of vowels Which precede V.

(a)
(b)
()

"2, Let H be the set oﬁ@@?pes (sizes) of silver coins 1n circu-
,latiomr in the United. States.

.'.WF» —~~'~‘-"

(a)
P ) (v)
L. (c)
l“?/ “

-t

X

Y =

XNy =

(
(

?

?

(

Is HCK?
¥s KCH?

4,)

). .
y.o -“_’
2' 7. o

LI

coins in circulation in the United gates.

What is HNK?

s

Let K, be the. s"e‘e ,of ¢ types of

«
P
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—~

-

<

L4

«
L

.5.‘ .Let A be the set of men wgo\::e been/President of the United,

/ ' ' ’ R
\ . . 2.5 . ‘ \:MN
Let P = {3, 5,' 7: '111 -13§jl7’ 19} ' i ‘ ~

.(a.)“VﬂwE ( ,? } ‘. | - \

¥ .
Let Q@ = {1, %, 7, 10, 13, 16, 19}
(a) PNQ'= { 2."} .
(b)‘v Is }?ﬂQa subset of Q? 7 °

Let V be the set of positive pdd whole numbers\ Let W-be the
set }positiv.e whole numbers 1‘é%s than 20. Let X be the set

of whole numbers divisible by 5. !
/ - .

() wNX=1( -2 ) . . .
() (vAW)NX = ( "2 ) : ‘
. Note; that-VAW 1is itself ‘a; set and the intersection of
-
. tmb set with X. is what'is meant by (v w)N X.

<

States at Some time since 19 Let B be the set "of me'who ’
have been Vice- President some time since 1922. e

’. ( .
(a) A=2( 2 ¥ . - o *° , .

(‘b) ANB = { <9 {W . :
(‘q) Show that B is Yot contain\ed in A; 1, e., exhibit an

_elgment of B whicfl 1s not an element of A,

6. Le%\M bg the set \of pOsitive whole numbers.
. iﬂhiﬂ\‘ ‘ ?:\ "’ .
[ \' Let H Be the Set' of mﬁltiples of BW\,\ ) S RN S
. Let X be the set of multiples of 3. N )
(, ' i v et 2
(a)~ H=( 2-) \ - —
IR Lo ?}}w‘ : ' ~ T
- ‘Q’) MAK = {/ y o
’ o
__%;W--w« e . . .
e -~ . \ | - o :
v - b
. . |
o ,/
8.
« 17 -




. )
Wt ‘ - . N
‘ (d) Show that H 1s not contained in K. ) .
© 4{e)HNK=( 2 } . ]
o _(D) Is.(ENM) Mo . .
Lt g ) ‘ R .

2. Union of Sets. N

Let A =.(1, 5,9} 4nd let B = (2, 3, I, 5). The intersection

of A and B (1.4, ANB) is the sét (5) consisting of the single

efer to the set“[l, 2, 3 4, s, 9}?‘

) element 5. How are we going to rf
what will we call 'the set Mhose elJements are the

In Qther words

-

elements of ‘A to ethier with the ~e7q.ements of B? We use the word

- . P KO
"union" in this sense. It*suggests the combifdng or uniting of .«

Thus (1, 2, 3, 4, 5, 9) isi'the union of A and B. In

notation; we write AUB (the "union of A and B" orf“A/d/gion B").

Similar notation and term:ﬁ)ology.is used for any palr of sets.
{

Let X and Y be any sets at all. Then XUY (th

" the sets.

.

t\?\union “of X and Y) !

is the set consisting of the element\s of'X togeiher with the

>

]
B

! £
-

E
elements of Y. N ]

To determine whether or. not an object 1s an element of }CUY 3

is simple. The obJect is in XUY provided it 1s in X or it 'is in

Y. It could be in both.

.Let M be the set of people.in your school with iast name *

L} v ~
'I“Smith." Let N be the set of 'people in your school with first

name‘"John." Then MUN is the set of all people in your school

. . / !
v ‘ i
4y - i . %
> -~
.



H

o

\
\

who qualify on either o tWo counts: for a person to be in MYN,

either his 1ast name mus be Smith'or his first name must be John;

i.e., either the person is in M or he is'in N. (Any person named
John Smith, qualifies on both counts.)

‘ Empty Set. What is the set MAN (the ﬂhtegﬁection of M and
N)? Ta be in MNN, a person in your school must have last name
Smith and first name John. Thus M/NN 1é the set of "John Smiths"

in your school. Now suppose your school doesn't have anybody in

' it named John Smith. Then the set’ MNN (M intersection N) doesn't

have ahy elements in it. ,In this case, we say that MNN is the
v o TN + -
14
empty'set (or null set). Some people would claim. that thukisn't
a set if 1t doesn't contain any elementsf*’But mathematiciaps

'\ generally find it more convenient and useful to use the concept

\\

of the ehpty iet. Then if X and.Y are sets, X/Y is a set. And
Xf\Y 1s empty if and only if no element of X is an element of Y.
The empty.set, thﬁs, is the set with no elements in it. We use
Y¥he symbol '@ to denote the empty sét. ‘

\ Sometimes in describing a set we may not know, at first

g | ance, whether or not the set has any elements in/i'. "If the
s?h contains no elements then we: are simply deScribing‘the empty
Sel. ‘For example, if your school has nobody in it named Smith,

»

then M would be the. empty set. . s

3
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© 2. Let X be the setbof”

*

v \/.\ ; ) )
/ ’ ' H
. ) -
. 2.8
. ) o F -
N -, Exerciges 2.2

Pl 1]

Use brace motation where possible and appropriate.

LIet A= (T,3,5 7,90 - - : ‘
R R e
S C'= {2y %4,.6,.8, 10) et
Fing: o l.., Q‘ ° : y \
(a) AUB Lo o ' - T
() aNB\ i o -
(o) auc ) T ‘&: LT
(@ anc 4. - ‘ - o

tates whose. names

begin with a directio

(e.g., We rginia). Let Y be the

set of states which r~on the Pacific Ocean.
"Find:
(a) . X
(v) ¥
(¢) xUY
(@) xNy A
. . 1 # /, « . .
3. Let M be the sqrc)i‘ points on or inside the square. Let N

a

be the set of points on or ihside the circle. Drgw similar

<
figures and shade o ) ‘ ‘
a 'M 1 - . , ;,
(a) 34 , . ‘
(p) - N o | ‘ :
, (¢) MUN
(a) MNN )
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Describe two sets H and K such that

.

(a) .HNKX is empty, and
(b;}‘ HUK is not empty. _ ,'
If A and B are sebs, -ANB 1s pty and (AU B)C’.A what can

you gonclude: about B? e .

. SN
If,M is a set and N 15 a set and if (MNN) = (MUN), what can

yow-conclude? !

N,Let R be the set_of Lalggpositive even whole numbers.
Tet § be .th}eet of all/positive Whole numbers divisible by 3.‘
(a). Describe RﬂS e
(b) List three positive whole numbers not in RUYS.

Explain why for any sets X and Y, (XUY)D(Xﬂ Y)

&

-

3. One-to-one correspond nces. ‘

Let & (the Greek letter alpha) be the set of capital letters
in the English ralphabet. , Let /e (the Greek letter beta) be the

«»
set of lower case letteré/\ - o

{e

»

»

L ] 4 k]

“ = [A, B, C4’\\'oo Y,‘ Z}

, ) ’ ﬁ'—"{a, by, Cy ees i, z} \\I__
Noirfhere ‘ié a natural ~wafy of associating the elements of & with

y *

the, elements of/B S(g that each element of & co‘rresponds ‘to exactly
one elemeht of/S and each element of/a to exactly one element ‘of

. ot under this same ~association.




5.

N

.

N . .

s . .
! B . k

. .

. ¢

3 . .

. > .
- . , .

Each capital letter is to correspond %o its loher.cese Tetter.

.

- We use the syﬁbole—»or’I R as appropriage, to indicaxe the matclhr-

. N
ing or correspondence., Thus, . . SN Lt .
g L )
A B ———— )
. I I_____I s ] ’.,
a b————z ' -
. g,
" This is an example of a "one-to-one" correspondence between.-
> .

the sets & and /B Tf'lere are otlier one-to-one correspondences T

A

[ o,

other capital letter correspond to the lower case letter following

" it. Thus . ) ~ C if(“
K A B————=Y Z ' s
» S
i b ¢ ————2z a i

In many‘cases in life, we are interested in two sets and the L

existence or non-existence of a one-to- one oorrespondence betWeen
the two . sets. In. some instances, we are interested in a

particular matching process (ohe-to-one correspondence), not Jjust '\
any one. If you are giving a theater party for 10 boys and 10 )

with the set of people going. If the seats ‘are rese Wed it NI

girls, your, set of tickets should be in on

corresponder_xceQ

Fﬁm ..probably makes a great deal of difference what one-to- -one

-

various members of the party.

}ﬁ.r?ﬁ - . “’
e L4 &
k :")v?
L> » o . . 3 o
- % * x €,
4 ’ ' .
i ) ‘-ﬂé,_ -«
- A ! oo~

betweeng and /9 Thus we might let Z correspond to "a" and each £ -

.
13

- correspondence you set up as you pass out the tickets to the ' .
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A one-to-one correspondence between two sets M and N, then,

"is a matching of the elements of M with the elements of N so that

under this matching each element of either set corresponds to a

particulatr element of the other (which in turn corresponds to it).

No .element of either set can be left over. v i’
+

.In most homes, there is a one-to-one correspondence between

the set of chairs at the dinner table and the set of members of

)

. . > i ;
the family. Furthermore, a’ are especially awaré of that parti-

cular one-to-one correspondence which matches each person with his
own: chair.

: »
One-to-one correspondences are¥of fundamental importance in

a - .- -

. the proceés of counting. -A person learns to count~-meaningfully

--when he learns to match the counting numbers in order and up to
a certain number with the objects he is trying to count. The f
process of>counting is a process of establishing a one to one
correspondence, Even before‘children learn to countf they- are g

frequently aware of one-to-one correspondences. Take four small

SN .0 | ’
boys and three ice cream cones. vert before’ the cones are passeq —

*

: out,‘s&me boy may well have mentally.matched the set of bo&s‘With

the set of cones and anticipated certain difficultieé}
In éeometry the notion of one-to-one correspondence arises
| ¢

ngturally and significahtly.) Consider two congruent triangles

s 7elow.

! Let AesD N
’ , /
. B<>E -
.I ~
./ Cep¥p . j '
: ; s
- ! '
. é,’j * ¢ / N ’
A 23 * ’
'l\ ~ ’ ¢ '/ .

g

A
-
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, , 2.12 AJ ' ,
\’ v * . : .
Under this correspondence of the set (A, B, C} of vertices of

the 1eft triangle with the set (D, E, F} of vertices of the right ..

triangle the two triangles seem to be congruent.

\

.

But under the correspondence . ' '
& ~ Ae—>D -~
. ' Be—3>F :
! Ce—>E
the triangles do not seem conéruent for the side AB is not the .
same length as the side«DF. ' O . v : /
’ ‘ Exercises‘2-3" . /

1.

Is there a one- to oneicorrespondence between- the states of the

- e

o,
'Uhited States and cities (1n the United. States) of over

3.

1,000, OOO in population" Why? T
COnsider the triangle‘in the

.

figure. List all six possible

one-to-one correspondences be-’ v
tween the set of vertices {A,-B,'C) )
’ L1
and the set of sides {a, b, c}. .ot
If set R 1s in one-to-one*correspondenge with set S and set S ’ *
witn'set T, is there a one-to-one correspondence between set R
N , ’
and 'set T? Explain. . . , '
,A '\ . &
. > 3 . v - ,,\/ ’
i . .
i A ‘
P 2/1 ~ . M
) S . , -
* o— T =~ ., £Y
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Describe’ three d;Lff“erent ore-to-one correspondences between
» s .
the set of digits {1, 3, 5, 7, 9} and the set of symbols

LNV D, s ’ C

5. Describe a one-tq-one lcorrequndence between the set of

positive 1nteger§ and the set of négat_ive integers.

- .
. .
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is another’distinction ¥e would like to make. When one makes a

R ~ -Chapter 3

i' Logic ‘and Geome%?y

N T 7
. . . . ’

[l

- 1. Statements and Imp;ications'of .Statements.

-

When we write a sentence we make a-~statement. Thk statement

may be true or it may be false or it may be meaningless. Examples |

-

of meaningless statements are. ’ . .
. \ . jm
(1) Abadab diaha loween-syman. C. . u&‘

Y Wor

(2) Horses and chairs ride honor ambng ‘windows. .

S

) Ip (1) the "words'ﬁﬁﬁn't even make sense. In (2), while the |

words all make sense the sentenca itself does not; (2) is in the

form of a sentence but it does not have meaning. For the purposes

* i . . ¥
' of the discussion of this chapter we want to consider statemertts

-

/ o
that are not meaningless. ) Y

; - . -

So’we restrict our attention to meaningful.ﬁtatements. There

-

-

statement, he ia trying toscommunicate information (valid or

invalid) Many statementsnthat are made iq,everyday 1anguage are

“l

true in Spirit but false as actually stated’ They communicate a
valid idea but. are not technical;y correct. For many purposes
technical correctness is not especially imPortaht. ’

But in subJects like mathematics we have to be concerned with

the~correctness or non-correctness of the specific statements we,

r

7

AN
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_make. It is'in the nature of mathematics that precision of

: Ianguage and thought is important Therefore it is necessary for

~us- to study Whe significance of statements, their meanings and
their implications. We shall assume that statements mean what
they -say and not. merely what we might wish them to'say. However,
statements are usually made in conjuncgion with other statements
and aiso on the basis of tacit agreemente which have been,buiit up
in general or in the particuiar discussion. . In Chapter 75%e
discuss this aspect of language further. Here we cite an example.
The statement, "I am not going to eat breakfast," usually carries
with it a tdcit time understanding. A person who made this sﬁste-
ment ‘on getting up in the morning and then ate breakfast that
morning would be considered as having made an untrue statement,
Purthermore, 1f he d1d npt edt breakfast that .morning, but did the
fcllowing morning, hiS‘Priginal statement would be considerec to be

" correct. It would normally have been"understood that he was

.

referring to breakfast t e day he made the statement unless the
t

contrary was Specified ‘Thus we agree that individual statements
‘ should be understood to be,in context, mere to restrict or'clarify
their meanings than to "change" them.
* It 1s-convenient to 1et\symbols like 4, B, and c denote
statements. For instance, consider A to be the statement, "The
'_weanger is not clear today," and consider B to be the stacement,

"I am ‘going to stay home.” We can make (further) statements using

statements A and - B -as- “building blocks".

“ M ’ . 7

P




Example 1. A 1is true. 1In our illustration this says 'The

. statement 'The .weather is not clear today, ' is true." But this

l

latter assertion means riothing more,nor less than the origindi )
- \ h
statement '"The weather is not clear today." Either.statement is

' true provided the other is. Thus we conclude that .YA" and

"A is true" really mean the,ije thing. v /} .

', Example 2. B 1is not true. ‘I our illustration this says
“The statement 1T am going to stay home' s not true" or in other
words "I am not going to stay home." The statement "B is not
true“ is called the negative of- B and can frequentiy Be achieved
by thelinsertion of the word "not" in the proper place in th¥
statement. B. ' ‘ u : . ,
Examgle 3. " and B (or what is the same, "A 1is true
" and LB is. true"). In order for statement " and B" to be true,
both A and B 1nd1\{1duall$' must be true. .’ .
' Example 4, "\ or B". The statement "A or B" will be
true provided at least one of the two separate statements A" and
?Bﬂ;A;s truet In other words, AL "A or B" is true unless both )
"Ah and "B" are false, The statement 'The weather is not cledr
‘today or I am :%ing to stay home" 1s true unless (1) the weather )
is clear today and (ii) I do not stay home. (The statement "A or
B" has, meaning but in our 1?%ustration, it is not the kind that

is.made in ordinary speech, as the statements ‘A and B themselves

a
v

are not.'natural® alternatives.) .o

‘ -
"
T e

LY
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Example 5. "If A, then B." In our illustwation, "If the -
weather is nc'clear.today, then I am going to stay home." This

is known as ) statement of implication. Another way of mak

this statement 1s to say iy implies B’. The statement megns that
it cannot be\that A 1s true and B is faLse. The' statement says
nothing abgut B in the event A 1s not true. Consider our il-
lustrat;on\;l;n the event the weather is clear today, I'am at
.1iberty to stay'home or not as I see fit. The original statement
of 1mp11cation does not restrict my behavior if the;heather is
clear. In the qyent A" 18 not true, the statement ?If A, then
B" has meaning ano is certainly not false. Thus, in this event,
we must consider the statement of implication to be.true even

T

though 1t does not cont¥ibute 1nfdrmation about B
The. Contrapositive. Statements of 1mplication (If A, then B)

are of great importarce in mathematics. They are widely used.

"If x 1s divisible by 4, then x 1is divisible by 2.” "If
«correspondfng sides of two triangles are congruent then the tuo
triangles are congruent. Any statement of 1mplication can be
made in a variety of ways. We have already noted in Example 5,‘
that "A implies B" means MIf A, then B." The statement "If B
is false, then A is false"” is called the contrapositive of the

statement "If A, then B." A statement of 1mp11cation and 1ts'

contrapositive really mean the same thing. We can see this by’ ,

considering the following table. ~ In this table we have listed

*




]

2 \
- \

e » 3.5, . = \ «————
. .

¥’

four statements across the top: "A", "B", A implies B", and T
’::f( "B is false iﬁplies A 1s false." In the left two columns we

~ have listed the four possibilities for statements A and‘ B, The

s

bottom row, for instance, iists A’ as false and B as false, e
) ‘ A " B m If A, then B If B is false, then K .
‘ - is false . " & L
7 by T S
T P P F ]
PN 7 T s T
F P T T

,Iﬂ the third aﬁd fourth columns are:listed T and F 'acéording~

. as the statement at the head of tﬁe'pgrtiéular coiumn is true or
false for A and B as listed in the same row. Thus the state-~
ment "If A, Fhen B" is shown as false for A l"t:rue" and B
"ralse", ' So i}so 16 1ts contrapbsitiv? as listed at the head of

the fourth column. If B 1is false, then A cannot be ‘true.

P *

Because the third and fourth columns are alike, ‘Wwe conclude that

P

‘the statement "If A, 'then.B" and its contrapoéifive have the. .

) same meaning. If'eigher is true the other 1§: ‘If eitheriis -7
false, the‘obher is, The contrapositive 1is important, 1n'pért, .
because some statements of implication are easier t? recognize‘ag

true (or false) when stated in the form of the contraposi{ive.~

’ Equivalent Statements. A statement of implication and 1ts

=
i)

contrapositive are exaﬁples of equivalent statements. So are the

.
t 7

7 -

e i ! v

€38y

. . -
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statements "A iWPIIEE an=§ d "If A, then B" In general, two
statements, P and Q, are said to be equivalent if P implies -
@ and. Q° implies. P. In other words, if either statement is

L%

true, the other must:also be true.- Lodking at this-informallygqe
may say tnat P and 'Q are‘equivalent if they are different

ways of saying the same thing. Let us givepan example; Suppose
M and N are;sets. - 4 -

Leg P Dbe.the statement: M 1is a subset of N. )

let Q be the stétement;‘ Eacn element of M is an e¥gment
of N. éhen P and Q are equivalent for

(1) 1f ‘P '1s'tme, then Q 18 true, and

(2) If Q 4s true, then, P 1is true.

Or we can say; gl)’ P implies Q and (2) Q implies 'P.
Wg\might note that eQuivalence has “the following property, “If
each of 'two statements is equivalent to a third, then they are

equivalent to each other." . ’ , .

= 7

The Converse. A statement of implication has a converse,

which in general, is not equ&valent to the statement. The converse

of the statemenQ\WA implies B" is the statement "B implies A",
€learly if the statement '% implies B" _and its converse are %oth
true then A is equivalent to B. The-converse 1is particularly )

importazt/iy geometry. We make & statement in the form "If A,

then B é are frequently also interested in the statement
"If B, then A", Y- . . .
- ’ &
S Lo,
w NM}‘\;N»«,\\-K/)E {_
- 3}
. + ‘
s
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Censider the following valid proposition of geometry: “If

two angles are vertical to each other, then they are congruent to
each other," 'This is sometimes stated in the form "Vertical angles
are cengru nt." The converse of'this statement would be:o "If t;o
‘angles are éongruént to each other, then they are uertical tb each
other." This converse is not a valid proposition\of geometry. (i e.,
is ‘not ftrue) for we may exhibit two angles which are congruent to

each other but which are not vertical to ‘each other.

Exercises 3 -1 - ,
1. Let P be the statement "6 is an even number," .an let Q be' {
the statement "all whole numbers between 5 and }-§ are even”,

Write out the statemént indicated (whether or not such is true)

. (a) P and Q- , o B
(b) P of-Q » £ - .
(¢). If «P, then. Q S ) =

(d) @ is not true (be careful.how you ‘do ‘this)

- ’

(e) If ,Q is noét true, then P .is true. - :

’,

2. In each of (a) through (e) of. ’1 stateigpether the statement /

\\-\\\l e ) -

“given is true. S S .
ha ‘
3. Explain why it is true that if.each of two statements is

equivalent to & third then the twd statements are equivalent

1
e

to each othepr.
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4, Supﬁose' x and y are numbers. Cpnsider tﬁe statement of
Zﬁplicaéiqn4 If X .y 1is positive, then X 18 POSLELVEs. e sormoe
. (a) State its converse. ’ '
(b) -State its contrapositive. ) ‘
(c) State which of (a)'and (b), if either, 1s a tiue statement.
1 .

5. Give an example of your own of/a statement ‘of implication

~ <(a) which

(b) which
(¢) which is true but whose converse is false.
(d) whose converse is true. ' .

(e) whose contrapositive is true. .
6. If'you are at least vaguely familiar with the notions of

, congruence and vertical angles, draw two comgruent angTes which

€

are not vergical thus Justifyiné the last statement preceding

-

the exerciseg of this section. ’ ‘

2. Postulates and Proof.

In,any discussion, we assume a géod many things. We asSume

that spécific wéfds mean what we understand them to mean. We

assume ﬁhe°prqpert1es of elementary logic--that.seﬁtences mean yhat

-~

they are supposed to; for example, that ‘the statement "If A is

true, theh B 1s true" is equivalent to its contrapositive: the

-

statement, "If B 1s not true, ther A 'is not trua'. We also

have to assume some properties of the particdlar subject matter

-« f
PR . N ‘
. - N [QPRPES
N ‘
R +
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under discussion. 1In Euclideankgeometry, for instance, we
,usually assume that a line is a set of points and that for any
two points there 1is exactly one .(straight) 1line containing the .

Jtwo points. i . K

The assumptions we make are, so to speak, a poivt of departure
for our further study. In formal geometry, we usually ca11 the
assumptions "postulates". And we try to write down specifically
what we are assuming to be true. Ogﬁ\gwise we would have a rather
fuzzy base of operations. On the basis of our assumptions we can
then draw certain“conclusions by use of elementary:logic. :We

»

The Justifications for the various conclusions akte called oofs:

= . . . - N !
sometimes call conclusions we can draw "theorems" or~£anQg;itions".

A proof of’a theorem 1is an explanation of why the,statement of the

-

theorem must be true (or cannot be false).
to make definitions of words we use if the °

meanings are ndt aiready clearly and unambiguously understood.
, |
$hghua words 1f{ke "angle", "trianglée", and "circle" should be

defined in eometry Words 1ike "“and", "is", "there"; and "or", |

are considered to be understood. Thefe are some words for—wnich
;7 . .
we, do .not or cannot give explicit definitions. These will be the.

so- called undefined terms of our system. In geometry,|"point"

"1ine" and "plane" are examples of undefined terms or concepts.,

The postulates tell us what we assume to be true about points,
. 4

lines, and planes. - The thebrems te11 us what Wwe can conclude to

-
a

be true. - ~ 3 ‘
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Geometry, 1ike other mathematical subjects, is not Just a

formal system of definitions, postulates, theorems and proofs to

' fabe stn\ied lparned, memorized and (if possible) understood. The-

development of intuition and the.pnder\tanding of ideas is at
least as imporgtant as-the "proof" side of geometry. Geometry in
the Junior high school is particularly concerned with introduction
of terminology, the understanding of spatial concepts, and the
development of more geometric intuition. Understanding refers to
comprehension of ideas and language. It involves 1earning‘of ¢
facts together with interrelationships of these facts.- It is note
_simple memori ation. Intuition refers to the\agticipationtof
facts and 1géas before these are pointed but by others. A perso
with’good'geometric intuition'can frequentlytdecide for himself

e facts are and what the theorems ought to be. Naturally,

at the junlor high school level, only a small amount of this type

of intuitioniéan;b@uexpectedu~- P S

While proofs .a# such are not stressed in this’%ook, some ex-

N

planation of the form and methods of proof 1s called for. Let us

SR NG Syt

.
consider an example. Suppose we have statements A and:- B and
we wish to prove that A implies B, i.e., that the statement
“If A, then B" 1s true.''We call "%" the hypothesis and "B"

.
2 i

the conclusion of the statement.

¢ Sometimes B as a statement is simply a rewording of ~ A (or

is immediately implied by A) in which case the proof might

occasionally properly be stated as "obvious". i ° e
5 ! -
~ e Ay
ol °
Py =
o~ e
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More often, however, the statement "If A, then B" 15 not; )
1ﬁmed1ate1y obviously true. One possible method of proof 1s to
find 1ntermed1ate steps in a "dfrect" type argument. Perhaps ye

can find statements C and D Such that ‘
i B '

* A 1mp11es c,
c 1mp11e\, D,
and ‘D implies B.-

Thén we may conclude that A .'implies B. For, note that if A

is true, then C must be true, Qgigg/éeans that D must be frue, .-

-

which means that B must-be true (which is’'what we wanted to  _

,show).

.

4 When the proof'is in the form of a sequence of statements .

[y Vs L.t
like the above, it may be that eaohljfep can be’ justified by one

. . o . 4 e
known TvOperty. If so, the’argumen is usually easy to follow.

But 1t may be that each step.needs a g&irly lengthy proof ~

1tse1f. In such cases the form of the argument may get complicated

s
~”
N

But the .dea of the argument may still be simple.'ﬁ? .
Another method of argument 1s the so-called "1nd1rect method"

or argument bxﬁgontradiction.a Suppose we want to show that "if A
v (\\‘ . ,
is true, then B 1is true". If this statément were false, then ’,/
)
(1) A would be true

(2) B! would be false.

>
-

.
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e .
We,euppose both o{ these are so, Sﬁecifically we suppose B to
be false. If as a,consequence of A being trué and é being
$ ralse Lx follows that-somg (ofher) statement is both true and
N false, then we haveQa contradiction, i.e., a situation that
cannot’ logically arise. -Hence our-assumptions cannot all be'
true. Therefore 1t cannot be thab A 1is true‘and\ B is false.
*Hence if A. is true then B must also be true which was what we
wanted to show.‘ .
j Exahples o& indirect arguments are scattered throughout the
.book. We give an elemen;ary example of such an argument here. We
regard'a sﬁqgight line as a se(‘of poihts. Suppose we haye g:;e;
the propeppy that for any twWwo distinct points, there can be at host
one straight line containing them. We wish to prove "If two
distinct straight llhes intersect, then their intersectlon cannot
contain two &lsﬁlnct-points". The proposition is of the form
"lf MA then B". We suppose B to be false i.e., We suppose

-

the intersection does contain two distinct points. Then

+ (1) each, of the two distino;\EQraight lines of our

hypothesis does contain the two distinct points.

(2) at most one straight Line can-contain the two ﬁ
. points (as is known from the glven property)’1
Statements—(l)'and'(2) contradiot each other. We have a

contradiction. Hence the statement "B is false“l cannot be true

. o .
(1f A 4s true). Thus "If A 4s true, then B is:true'" as

N to be' shown‘. ‘
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In traditional lothngr?de geometry, proofs are usually given

in a form of

P -

> N s . g %
- (1) statement (1) reason
(2)//;tatement (2) reason
- \ w . "o
" ' n s
"o Lo
) (E> statement (k) reason - <
. ) Q.E.D. )

2t/

. . ]

The final statement (k) 4s usually the assertion of the conclusion

of the theorem; i.e., "that which was to be shownihpr, in La%in{ s
'"Quod Erat Demonstrandum" . ;‘

In actual practice in mathematics, however, proofs are almoét

-

—néger given in this.form. A proof is written,out as a paragraph ;

or several paragrapﬁé. The formal presentation in geometry texts

-Step procedure, .

is designed not as the

a means of emphasizing

pendence on previously

form for a proof seems
-~ 4

)
as such, are needed.

form but its validity,

> -3
e

only way to present a proof, but rather'as

the significance of 1mplicafion, the de-

established results, and a logical step-by-
N Ve

In jinior high school geometry, a more casual

called for in those few cases where proofs,
-

The critical aspect of any proof is not 1ts

i.e., its logical soundness.
¢




‘ ~

Finally we ask how we might shoy that an "alleged" theorem
is false (ofigot valid). We might beigiven a "proposition" and:
be asked to determiqp\ﬁhether 1tl;s true.or false.k If the ‘
"proposition” asserts something to be so for all cases of a
certain type, then we can disprove tﬁeiprppoéition by exhibitingl
an example of this type for which the assertioﬁ.gs not so. Con-;.

sider the statement, "All primeg aré odd humbers." We. can

L4 " '
disprove_ this statement (show it false) by exhibiting the number
6

7

2 whichis a prime and is not an odd mimber.

¢ ~

3

» . Exercises 3-2

\

Write out two or three of the postulates of geometry (as best

~

you-gcan remember them).

~ a .
Recall (as best you can) some propositiion of geometry that we

haven't mentioned. Write it in the "If--then--" form. Write-

its contrapositive aéﬂ_&&E‘SSEXS;Se,;if possible. (For some

propositions .these are rather Qricky;), - .

A

- . ) 4
Write, three "theorems" about numbers (in thes "If--, then-:"

form).” Write thé-eonverse of one qféthése and the contra-

- » .
™

positive of another. ‘ Y
Write out an Yalleged"” theprem of geometry which you can -

disprove by example. ° s . ' . g =
Exp;ain'why the following two stapeﬁents_are not, in gegeral,

-
\

equivalent. K ’
(a) If A, then B . - _

. ! »
(0p) If A is false, thén B, 1s false.,
. .

4L
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G b
) Abstractions and Representations T
’ / * . |’ ”—. !¢

For almost all people who study any mathematlcs, the subject

‘matter is properly regarded as a t6ol for use‘in problems.that

arise ih évéryday livipg: Some of these problems are technical or
ecieﬁtific Th nature but most afe applications of arithmetic.
The problems of arithmetit'usually deal with counting or with i
hegﬁuremeht or with.bbth. .

-~ N

®

The system of numbers which we use is; however, an abstract

system. There are infinitelly many counting numbers, [1,2,3,.f.)

?

but in applications we pever\ count more than a rather small

finite number of objectd in %he world about us, It turns out that
assuming the existence of finitely many counting numbers is

extremely useful in mathemdtics whether or not the numbers can be

'considered to correspond to concrete objects in our universe. It

B

is mabhematically (but not physically) unimportant as to whetheﬁ
or not there are infinitely many objects in our universe: But the
mathématics we get from the assumption of infinitely many counting
numbers 8 of tremenddgg importance in the scienti§?% world of

. & \
today. There would be no modern science or technology if such

basic aSSumpﬂioqp in mathematiés had not been made & long timé agdfﬂ

- hJ

M6




Hence, we should be prepared to accept mathematical systems

(1like the number sy%tem) as Jbstractioﬁs of phenomena in the *

° everyday world. Abstract mathematical systems have helped us and

> The basic concepts of geometry are also mathematical ab-
stractions. A plane, for instance, is a mathematical abstraction

of a flat surface. When we want to study the common character-

-

istics of flat surfaces we study planes. We specify properties

,0f planes by thinking of common pr0perties of flat surfaces like

walls, floors, blackboards, ete. .
" Por any £Wo points (of a plané).there is a-poiﬁ{ahhlf-way

between them. This prOperty o? planes (or of lines)*suggested by
Co -

thinking about flat surfaces leads to a distinction between the

-mathematical absftraction and the physical realitly.

3

B B’
3 2 1 . >

On the mathematical plane there must exist the point Bl (halfway

between A"and B), the point B (halfway between ‘A and B ),

2 &
. the point B (halfway between: A and B ), and - ‘80 on. _ The :

"halving the length" process can be considered continued indefi-
nitely "In the mathematical abstraction this seems reasonable.

But on any flat surface such a process could be performed only a

will continue to help us understand our environment. '
very.small number of times before the "points" would be J



3 4’3
’ 2

;ndistinguishgble. Try @6 think of it being performed even 50

1
s

times for instance. Evén wfﬁh‘the sharpest 1n§£ruments it would

«
n

\‘not be possible. ) . . « !

- Where do these considerations leave us?’ Concepfs like these
‘concerning the mathematical piane have turned out to be exéremely
useful in helping us understand noé onl§imathematic% itself but
also many applications of mathematics. Even tho}lgh the mathe-
matical abstraction does not seem to give a "true" picture of the
physical object, it frequently is of great value, A well-known
example of this type of reasoning -is the use of maps for the )
surface of the earth. The usual. (flat) map of the earth (Mercator
Project19n) involves considerable distértions in gx%reme latitudes
and does not correctly indicate "shortest" paths for long distances.
Nebertheless, suc% maps are widely used an@ méke possible better
understandings of the surface of the éarthi; The abstractions from
the surface of the earth to the surface of a sphere and from the

¢ ¢

surface of a sphere to a flat surface such as a'map are important,

valugble, and practical. . il L

°* It is interesting to note herﬁﬁgw@ifference between pure and
applied mathematicians. Pure mathematicians study mathematical
systems as such whereas applied mathematiéians stuqy aﬁbliéayions
of such systehs to various problems that arise in the world ébout
us. Both groups of people are 1mpopfant. ‘éome of the really

important scientific advances have come as results of pure

.
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mathematicians! hetter¢understanding o} mathematical systems"ﬁThe
development of analytic or coordinate geomefry (discussed in
Chapter 12) was a result of pure mathematics--an attempt to under-
stand relationships between mathematical systems. Without some-

thipg 1ike analytic geometry we probably would have no modern

science: ,&
+

» There 1S another side to the t‘:&oin of abstraction. While
mathematical systems are abstractions of physical phenomena, we
frequently study the mathematical obJects by considering specific
representations of them. A blackboard is a representation of a 5
plane. A drawing of a line is a representation of the line; it is
not the line. Ye often can’understand mathematical systems better

by considering concrete representations of them. 1In fact, much of
our intuition about mathematical systems comes from considering '
representations of then. Our.intuiﬁion about.geometric space . :
--sSpace as a set of points--comes from our natural awareness of

physical space--the three-dimensional environment in which we live.

But we should not confuse the mathematical system with its
representation. We may think of the walls of a room £s planes. Y,
However, the walls are not the planes, just models of them.

Sometimes our language 1eads to confusion on this 8core, 'We

should try to think, speak, and write with clarity and precisidn

. - . /
.
.. /A « /
. i
4 .
.




The statement "Draw a line" really means '"Draw a representation of
a line." While for simplicify we may use the expression "Draw'a

line" we should keep in mind what is meant by it. J

Because we shall regard drawings as representations.of
— - o
abstFéEt mathematical objects or entities, it really is dot im-

3
pOrtant mathematically how "accurate" our drawings or sketches are.

Drawi 8 and sketches are to's e 5335. Whether we '"draw a
e g exe io sgseag 4

TR freéhagd of with a straightedge makes no difference mathe-
matically, the thing drawn is only a represenpation of a }1ne
anyway. Whether we make drawings freehand or with 1nstru;ente may,
however, make some difference pedagogicallj. The nature df the
_audience and the uses to which a drawing is to be put Wil
frequently_dete}mine the type of drawing to0 be made. We should
be sufficiently careful in sketching to get our ideas acrbss. We
should not be so’ meticulous that the processes of drawing either
interfere with the effective communication of ideas or re;lace
ma thematical conéepts with artistic ones.

-

In classical geometry, the unmarked ruler and compass were .
. ) p

theyyboeis” that were allowed. Questions concerning geometric

.constructions using only these "allowable tools" are legitimate

ones in geometry. These questions can be (but usually are not)
s .

phrased in terms of abstract concepts and processes.
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Exercises

] -

In your own words describe what 1s meant by a mathematical

system as an ‘hbstra’tionﬂ. , - .

Explain how the symbdls used for numbers may be regarded as

names" or representations" of the numbers._ ) - .
W1thout 1ooking ahead to the next chapter, describe or define

a "triangle". - Keep your definition for comparison with that
of the text." '

W1thout 1ook1ng ahead to Chapter 5 and' Chapter 6, describe or

define an "angleé". Does a triangle "have " any angles by your

definition? Re-examine your definitions later.

.

{

-
(]

|t i <o
a



Chapter 5

)

Non-Metric Geometry. -
. g A, Vi

. \
l. When we say non-metric geometry, we_are referring to that

- A

part of geometry which does not have to do with measurement. We

might call it no-measurement geometry. In this chapter we shall

be reviewing and restating several of the important facts and

poings %f-view of “traditional Euclidean geometry. But in ac- 4

cordance with the chapter title we '8hall concern ourselves with that
fragnent of Euclidean geometry which is independent ofh@easurement.

Very little of the'terminology of this chapter will not.be familier

to most readers. We‘shall,‘however, give, specilal or restricted

p
. . - . — —
meanings to a.few of the words. ’ et AN

N 4

EERL TN T

" We consider space (an abstraction of ordinary every-day thrge-.
¢ .
' dimensional space) to be a set of points. Intuitively speaking, a
point represents and is repnesented by a position or locatian in

space. * ' ; <

_ \We shall give some of the basic properties of space and its

subsets. There are certain subsets of space which g?egpf funda-

mental importance in Edclide: geometry, The most\important of

these are éstreight) lines aRd planes, Each (straight) line is a

set of points of spaoe and eack plane 1is a‘set oi points of space.
. We shall understand that each line gxtends iidefinitely far in

both directions. Later, we shall specifically think of portions

-




5.2, . ,

.

of iines. in‘geometry, we study such things as properties of the
set of‘all'lines in ‘space or the set of all lines ifr a plane and we
stud&lpropErties‘of the set of "all planes'in space.

We intuitively understand a lime to/bé what we think of,as
streight and a plane to oegyhat we think of as a flat surface. To
study flat surfaces, we~abstract the netion of flatness and call
the mathematical flat surface a plane. To study properties“of .

pignes, we think of properties of flat surfaces. If we'wish to

draw a picture of a plane we draw something suggesting a flat -

7

" surface. ¢
Possibiy the most fundamental broperty of the set of lines in ,

4 ‘ 2 )
space is what we shall call g b
* + v,

Property I: For any two distinct points in space, there is

‘one andﬁonly one line containing the two pointst/m\

N P %/
) La\ We*may think of this property the "straight string" . N
F‘ .
%property or the "line of sight" prog'ﬁ. For any two points

i (positiﬁhs) in a room (with no obstructions), a stiring can be-
‘;ﬁ&etéged between the two points (there is one line containing
/  the two points): Any other string stretched between the two points
would occupy the same place as the first string (there is only one
line containiﬁ@ the two.points). If A and B are points we use
the symbol AB to denote the line containing"A and B. .
We might note here that another important property follows
from our Property I: i.e., can be proved'on the basis of Property

I . ] . - . a’:

§




’

“.Property I-A. If two distinct lines intersect (have'a non-

©

empty intersection), then the intersection is exactly one point.

Proof: Suppose the two distinct lines 21 and £2 are
“such that £,N 4, contains the two distinct’points P and Q. "By ,
\Property I, only oné line can contain both P and Q. Therefore \
21 and 22 must be the same line; 1.e., fl and 92 must be different
names for the same line. This contradicts the fact that ﬁl and 12
are distinct and therefore completes the proof. .

We next state a property n?lating the set of all lines with
the set of all planes.

Property ILX.If a line containsg two points of a plane, it

lies in the plane. . ) -

N °

We could alternatively say that the line is a suhset of the

plane or is contained in the plane. This property practically

describe; what we mean by a surface being flat. We might pay that
a yurface, is flat if for each palr of points of it the line Join-
ing themﬂlies in the surface. s o . o TN

¢ &
Note that any plane must extend-ingefinitely°far,°for it
egontains lines which do. ] « oo ’ i

Property II glves us a prOperty of the set of planes. }It.
tells us something about what planes are, like (in terms of lines)
It does not say what will determine a- plane. To assert -what i;
sufficlent to determine plarf® we have S

Property III For any three distinct points not-all on the

Same 1ine, there is one and only o‘neeplane containing the three

) Qoigts.




: Note the similarity between Properties and III. Property I

says that if A and B are points and A is not the same as B, then '
\there is a unique line containing A and B, Property III says that

- if A, B, and C are points and there is no line containing A, B, l

/and c, then there is a unjque plane containing A, B, and' C.

Property III might e called the "three-légged stool"

property. If you hold a three legged stool up in a fixed place,

) a flat surface can be held against the three tips of the legs \

“

(there is one plane containing the three points) Furthermore, .
a\ny flat surface held against the three tips must coincide with the ‘
first one (there is only one plane containing the three points). .- =» h
, ~ There is an interesting property which follows from Properties
I, IT, and III; i:e.! is implied by Properties I,%II, and III. °

i Property III-A. If the ‘intersection of two distinct planes °

3

contains ‘two distinct peints, then the intersection must be a

lineo ’ - \,_‘5/) .o

) Proof.t Let M, and Meabe the'distinct planes such that -

'S * .

~M N Ma contains the distinct points P and Q. By Prope ty I

. $here 1s a unique line (call 1t X£) containing P and Q.
-~ Property 1I, »Q is a subset of Ml and also is a subset of M

TherefonejﬂrD_Mrcontains the nnék Ir M ﬂ M, contained any ~

point R not on/(’ then P, Q@ and R Would be three points not ) .

the. same line (,Q doesn't coritain all three and any line. othen ah

v

-
)

X

T

EAN
I
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"4 cannot contaln even P and Q). Then M; and M, would be distinet * °
planes containing the three points P,‘Q and R and Property III 5
says this cannot happen. Therefore, Mir\MQ not onlj‘eontains,e;
~4 but.ég,f; the 1ntersect19n is a line. Thus Property III-A )
proveq,n &7 ’ ) e
Another useful property follows from those we-have stated.”
Its prdpf is left to the exercises.

Proper%y III-B.

then there 1s one and only one plane that contains P and.[

e . v

»

‘ 3

Exercises T N
. Cma -
Suppose P, Q, and R are three distinct points and are all in

each of two different planes. e»What can be said about-P, Q,s

and ‘R? \\\ . . B

Suppose points P, @, and R are in only one plahe.. What(pan
; ¥ ‘.
be sald about the line containing P and Q2. . - .

o "
P—_—

(a) Suppose three po{nts are not ar§¥§% the same line. How

B

many different lines contain at least two'of tg§m°~
ety

Suppose four points are n§t ald in the Baﬁe plane. NHow

many different planes contain at least three of them° 5

In (b) how many different lines contain at leas %&o gi\:\ﬁ\\
\ ‘ Je/ -

them? L.

\Q | | | \ e




°

[

distinct points?

line? \

\

5. Prove Property III-B.

. distinct points?/—ll‘t{ree dis’tinct‘points not on the same
‘ i . 4 -

~

¢

How many different lines may cdntain one point? Two

.

How many different planes may contain one point? Two

v

<

.

. . » L 4 .
2. Intersections of Lines and Planes in Space.\ On the basis

of Properties I, II, and IIT we are able to arrive at some con-

clusions concerning the nﬁe of intersections of lines and

planes in space. In fact, Properties I-A and III-A embody just

< such .conclusions.

< kY

Case I: Intersection of Two Distinct Lines.

LetX:L and Xa ‘denote twdo lines ;J’lth ’(1 ;4/(2

" (a)- Suppose /(71022 £d, L.e."
/()1012 is r;oj: empty. ‘Then “

by Property I-A, /lﬂ)eev’is

a set’ congisting of a_ single
?

point. We shall show that #
, f]_U/ee must be a subset of . .

one plane. For let P be the poiﬁt of intér- -
sectlon of 11 and A,. Let Q, be a point. of Il
“other than P and let Q, be a point of 12 other

than™®. Then P, @, and Q, can not be on any

[}

.  one line 'and thus there is a unique piane ‘

e

.




-conta;ning,P, Q, and Q,. But b\y Property II
. ' tﬁis plane must Soﬂtain Xl (s;§9§‘1t c;ntains
P-and,gl)’and must contain X; (since it -con-
) tains P and QéT T ’ »
(b) Suppose X f\f = ¢ i.e., Y er is empty.
‘Then one of two situations is true

1) 'Ql and fz are subsets ‘42

of the same pfane. 'In

!/ this event, 11 and.[2

YA
: are called parallel lines. ' :
11) Xl and 22~are not subgets of the same

plané. Then ﬂi and £2 afe‘qalleg skew

3

lines. /Many pairs

of skew lines are

7

suggested by objects

in 3 room. A "north-
“ 1

» south" line-on the

3

Vi
. \§\\

, celling and an "east- X
Plane M \\\
west" 1line on the

: M:sz. ﬂ pierces M.

floor are skew. -
. 11 and 22 are skew.

Vo

Wa'might reorganize Case I as follows: . If X and,fz.

are distinc® lines, then either
1) 1 LJf is not'a subset of any oné plane.’

In this event f and f are skew and,’

uiln£2 = ¢ or . ,l oof

Q

°




_2) flLJX% 1s a-subset of some plane. If
Xlﬂ.fz =g, theh<ll»and Ié)are parallel.
If Ilﬂ 12 # g, then 41N ]2 1s one point.
" Case'fi: Intersection of Two Distinct Planes.,. . :

nd
Let M; and M, denote planes with My £ M,.

(a) Suppose Mﬂ M, = g, 1.e., M, and M, have no

points 1n common. Then‘ Ml and Mg’are safd.to

be parallel. Usually, /

—DPlanes of e floor

and celling of a room

“ are parallel.

K

Suppose 'Mlﬂ M, # §, 1.e., M; and M, do inter-
sect. We need one more property of the gat
of planes in space to handle this case czj-
pletely.. This property like the others 1s
intui&lvely rather clear.

N

Property IV. If two plahes intersect, the intersection

contains more than one pbint. ’ Coen . e

Therefore ir M ﬂM2 £ 8, M N MQ2 must contain more than one
.3,
Jpoint. Thus by Broperty III-A, the - M0 M ,
intersection must actually be a '

straight line., Two positions of a

door represent planes whose' inter-

r -
section would be the lime through

- the hinges: of the door.
’




We may summarize Case.II, .
° W ' N

- ) R . B ,
1) MJ]MQ is empty. 'Then M; and M, are parallel.
11) Mlﬂ M, is not empty. Then Mlﬂ M, is a line.

N

“case III: .Intersection of a Line and a Plane.

I3

S

P

- Let M be a plane and let £ be a line,~

(a) Suppose MNZ - g, i.e., M and L do no"t:,'
- intersect. We say Athat': M and £ are parallel
or that the 1ine £ is parallel to the plane
M. Ar:y lin;a in the plane of the celling is.
parallel to the plane of the ‘floor.,

- ‘, o

M
<&

-

Suppose MNA £ 0, 1i.e.,.M and £ do intersect.

Then elther Mﬂﬂ consists of exactly one %’c
or MN{ contains more than one point. In ’é-

1dtter case, by Property II, £ must lie in M
or, in pthepy/words, £CM.

A

~
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A}

1
v

Iﬁ?‘ ’ 5,10 o o o
. We may sunmarize Case.III. ‘ :
1) " MNL is empty.
11) ﬁle is one point.
111) uo4.
. Note that in axl of these discussions we have not used the

L

concept of distance or measure at all We have been concerned

7o ]

with what are called "incidence relations s 1l.e, iIntersections
of lines and planes.

In studying and understanding geometg¥b considerations like
ghose of this section, "the teacher or student ought to think in

terms of. the geometry, that is, typical representations of the

. mathematical objedts. He ought not to memorize facts as such,

l§

but rather he ought to, get the geometric point:of-view through
visualization. If he does,)then he will know the "facts" without
further effort becausehe will understand the intgition and
spatial relationships behind this aspect of geometry.

< Vs 3 -

H
Exercises -

-
~ -

- 1. Describe two pairs of skew lines suggested by edges in your

room.

2., .On~ your paper, label three points A, B and(C so’tﬂét ‘AB is”"

not AC. Draw the Iines AB and ic, What 1s 8 N &2
3. Carefully fold a piece of paper in half. Does the fold

suggest a line? Stand the folded paper up on a table (or

[

-
- ‘ P . )

desk) so that the fold does not touch the table.: The' paper

-
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[ N

»

makes sort' of a tent. Do the;') table top and the folded paper
” »

“w”

L)

is the intersectﬂgixof all three planes? Are any ‘twosof the

planes pafaiiel?

touctfing the table. Are three planes uggested?™ Is any ¢

point iﬁ/gil ﬁhree planes? Whéf is the intersection of the
three planes? o - .
5. Hold the folded paper so that Just the fold is on thé table

top. Agé three planes sugg?sted? Is any point in all three

1
planes? What is the intersectien of the three planes? .
6. 1In each of the situations bf Exercises 3, 4, and 5 tonsider
only the line of. the fold anq;the~plane of the table top.

What are the.interéecxions of this line and this ﬁianez You
T ~ - .
e three answeﬁr, one “for eaap of 3, & and 5,

" should h
Te Considef9:hree aifferenﬁ¢li%es,in plane. How many points

L4
.‘
would there be with each’point on east two of the lines?.
Draw foyr figures é%owing how 0, 1, 2, or 3 might have been

- your aQEWer. Why coulg,not your énswer have been U4 points?

8. Consider this sketch of a house.

Al R ’ . 5 » ’ . //E‘ . . \

i amars e § F ‘ a’«.// D
H . ———— e
: , /T-w A
[ - *
L] 1 //' J *
H 6 _ _ /
. . c
» ////
L »
- _ ’ s, ALZ 8 ~
» :’
.’ ry 4
-
- v *
t g&i 2 . .
, ’r 56 g d

'
N
.
oy
X

. ‘ \‘.
suggest three plahes? Is any point in all three planes? What

.~ Stand the folded paper up on a tab%e with one end of the fold-~

-
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We have labeled eight pofnts on the figure. Think of thegggnes‘
and planeg suggested by the figure. Name lines by a pair of
points and planes by three points. Name:

‘e (a) A pair of parallel planes,

5

.

(b) -a pair of planes whose intersection is a line. )

(c) Three planes that intersect in a point. y

-

- A
(d) Three planes that intersect in a lixe.:

(e) A line and a°plane whosé‘ﬁptersectiog'is empty. R
() 4 pair of parallel lines.; ¥ ’
ﬁ@(g) A pair of skew lines. ' ‘ { i . Do :"
- kg)' Threé lines that intersect in’ a’point, B ) '

(1) 'Pour planes that have exactly one point'im-COmmon.

’,

«
~

3. Betweenness,Segments and Separations.

‘e

f
If P Q, and R are 3 ﬂoints of a line then 1t is 1ntuLtLve

that one must be oetween the othen two.‘ In the drawing. P is ¥
4 .

‘between Q and:R. 4.

We shall assume betweenness prdberties bf sets of points on

a line without explicitly s&ating these, properties. An example of
jbh 4n assumption would be that as~1n the figure oelow, if C %s
'between A and D atd B is between A and C then B 1s betkeen A and

3 .’

Dand C is between B andD. =~ | - - o~ A .
S . "
C, ‘e 6 !
" A ‘ ‘ Y
‘ . ‘ B, ¢
- > \ 1 *, . .-
A W )
. "/ - o - .i
2 . . \ ~
4

= —*-Jo

@
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.

Euclid ¢id not'fu;ly appreciate jhe‘significancé of:between-
ness properties. It remained for geometers of the last hundred

yéars to emphasfze the\fundamental nature of betweenness and its

.
' a

. assoclated concept of order of points on a line.

It 18 not the intention of-this book to give a complete
treatmént of the foundations of geometry. "Rather, here, we -simply
note the importance of the betweenness concept and tacitly assume
what is geometrically evident about betweenness. ‘

Let £ be a line and let P and Q be points of £+ Then the

I
. o SRE S
. Set of all points which are between P and Q together with the
points P and @ is called the segment PQ. We use the notation, @r'

or QF to denote the Segment. Note that PQC(—Q) (the segment PQ is

)
a subset of‘the line PQ) The;e will be many<§ontexts in geometry

when we will find it useful to talk abotit segments, and it is

’

frequently necessary to distinguish between a line and a segment
‘ .

which is a part of it. . - . ) v .

We next consider an important relationship which has three

.
Ly

Similar manifestationsi T . - - A TR

.

‘(a) Ifr A 1s a line and P is a point of £ then P separates f
-into two half lines. The set, of points of the line
aother than P is the union of’ these two half- 1ines.
These two half- 1ines do not- intersect. We call P the

boundary on X of each of the two half- lines.




(c)

spaces do not intersect., | »

501”’

|
| '
i

h

" . ‘I .
IQ M is a plane and £ is a line in M, then b4 separates M

1
o

’

into two half-planes. The set of all points of M not on
f!is the ﬁnioﬁ of these two half-planes. These two

i
half-planes do not intersect. We cgll ﬂ the boundary -

in M of each of the two.half-planesg. . .

d , . 3
If S is,space (the set of points of space) and M is a
plame (in S; of course)'ﬁpen M separates S into two
half-spaces. The set of éi% points of .S not in M is
« !

the union of these two hal rspaces. These ‘two half- -

o b,
’ 0y

L

-;»OWebééll M Ehe bdundary-in S of-each-of the two’halfagpaqu?

Let us think of an*exampie. The plang;of the floor separates?%hé

set of-points above the plane from the set of points below the .

: H:lﬁe:. "_» o f

- . w4 e -
-~ . - . P P ~ . e s
.
* -

One of the propert;es of* these separations can be stated in

térms of betweenness.. We state -it. for the case‘oﬁ a line

separating & plane (Case B).
i

L

°
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Let f be a ling 1:n the plane M. Let P and Q be points in
ciifferent half-planes determined by ,Q Then there is a point of
£ between P and Q ) .
Let X and:Y ‘b,e’points in the same ﬁalf-plane _de.termined byf.
. \Then no l'aoint( of £ 1s betwéer; X and Y, In\otrfer ;vords, we havé a N
cr:ite.rion for 'deterﬁ>ning wheth‘er two points of’M not on /Q are in

the same half-plane’

= bounded by f « They aré in the séme hal_f'-blane d
' if ‘a.pd on‘ly .Lf.‘ no point of £ is bgtween them.. Analogous statements

can be made in Case A of a point separating a line and in Case C -

of a'plane Separating space.’ >

-

Sometq.mes 1n'~ea'se B of a line ,Q separatii‘xg_ a pl%.np M we call®
[ :~the.h#lf-plahes bounded by £ the sides of £ (in M) and we denote

fthe;sigies of £ by names of points in the sg.des. In the figure

— -y

< ”‘faB@\'fe ‘Wé say the P-side of X, the 'X-side of £, the Y-side of £ or
‘ i’ - ~ -~

. e, . .
the Q-s’idgi of ,Q Note that the first three of these are different °

.- names for the same set. The P-side of X 15 the X-side of £ 1§

our example. We also‘spmegiriies call the Q-side .of X the "non-P- .

4§
side of £". . . . =
. 4 .

8 . 2
. ’




JFiynally, we wish to introduce the term ray.~ If £ is a line
and P is a point of £ then P sepa'rates 1 into two h_alf-lj.nes
(neither‘containing P).’ A set of \points consisting of ®ither of
these half-lines together with P is called a ray of the 1ine.

The point P is cal':Led the endpoint of such a ray. We denote. the *
ray as 13?5 where Q 1s some 'other point” of the ray. In' our -
notation PQ #£ &P. | : : S

Note' that for the line in the figure:

X~ P Q R
(1) B-T-R - |
(2). TN 5% = TX. . .
. (3) ¥BN-B§ = Q. L ' ‘ T

(4) PXN B3 is the point P itself.
(5) PXU F§ = 1:‘3 (or a_}t?, ete.)

4

’ ' Exercises %3

1. Draw a horiﬂtal 11ne. Label four points on 1t P, Q, R, and
. {S in that order frc!n left to right. Name two segments,
“ (a) whose 1nter§ection is a seghent.

» N
(b) whose intersection is a point. o
- .
(e) whose intersection is empty. ‘ .
() whose union is not a segment.




,ABﬂCD is one point.

‘these things, explain why‘we cannot say that \"thrqugh any

- © T saT ' !

.
o

Draw a line. Label three points of the line A, B, and C with

B between A and C. -

(a) What 1s TBNBE?

" (v) What is AENEC?

(c) What 1s EUE”
(d) Wnat is ABUZRC? i
Draw a’ segment. La})el 1‘ts endpoints X and Y. Is there a palir
of points of XY with Y between them? 1Is thez"e a pair of points
of Qﬁ with Y between them?

. -

Draw two segments AB and TD for which ABNTD 1s empty but .

]

Draw two segments 'P‘Q' and RS fér which PGNRS 1s empty but .
§3 18 g. . - ’ . '. ' ’ *
Let A and B be two points. Is 1t true that there 13 exactly

b ”»
one segment containing A and B? Draw a figure expla ing this .

@ e
“

problem and your aqswe? T & ; -

.-t
-

In some older geometry books the authors did not make any
distinction-between a line'‘and a se:g\ment. \They called each
a "’straight line". With "straight line" meaning either of
two points there 1s exact%r one straight line."
Consider the figure at the right. ‘

(a) Is the R-side of £ the same P,

.as the S-side of A? .

x -




’

<

. ° «

(b) Is the R-side of A the same . - -
as ;chf YQis1ad?’
(e) Are the intersections of £ - v
and PQ, £ and RS empty? =
(d) Are the intersections of £
. and G5, A and PR empty?
<(e) Considering the sides of:ﬂ,
are fhe previous two answers

- . N
what you would expect? v

-

Q. Draw a line contalning points A and B. What is ABNBA?

10. Draw a horizontal lihe.. Label four points of it™4, B;

What is the set of points not in AB? -

C, and

- :

P in that order from left to right.

Name two rays (using. these points for their description):
. .
(a) Whose union is the 1ine: ,

4 -

(b) Whose union is not the line ‘but contains A, B, C, and D.

"(c) Whose union does not contain A, :
. R :

(4) Vhose intersection is a point.
< (€) whose intersection 1is .emp%.

11. Does a segment sepa:f'ate a”plane? Does’ [a iine separate space?

12. Draw two horizontal 1ines k &nd £ én your paper:” These -

’

lines are parallel. Label point P on ,? Is every point of

{ on the P-side of k? Is this question the same as "Does’

the P-side of k contain {"?

“

¥

4

A4

L &-.. ‘..4
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13. The idea of a pfane separating apace is relaﬁed to the idea

k of'the surface of a box separating the inside from the ou%-

{~side; If P is a point on the inside and Q a point on theci
outside of a box, does PQ intersect the surface?

14, Explain ‘how the uniorf of two half- planes might be a plane.

15. If A and B are points on the same side of the plane Y (in

,space), must X§ B NM be empty?, Can ABJ\ M be empty?

v

4, Angles and 'Parallel Lines. . ,oow
~

Let A, B, and C be three points not-all on the same straight

line.

Then by Property‘III of Section i, there is a unique plane which

AV
congains A, B, and C. By Property II of Section 1, the plane

L , <>
-which contaings A, B, and C also contains the linesﬁﬁi BC, and

<>
AC and, of course, all subsets of these lines., -

The set BAUBC (the union of the ray BR and the ray BC) is

'

~ called the angle ABC (or Z?BC)~;5B 1s called the vertex of the

angle. The letber designatingpthe vertex is-always written as
tqibmiddle of the three letters denoting the angle. - We note that
/ABC = /CBA'but /ABC # /ACB.- By the definition above an angle is

[y
v

T
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a set of points and is a subset of a plane. In Chapter 6 qe: ;
shall deal with measures of angles but for the time being Qe are?
only conceghed with an angle as a\set of points. /

We could have, eguivalently, defined an angle as the union
of two rays ng:mon the same Iine‘and with a common endpoint.
Note that this definition rules out "straight angles" and
ggro-dggree angles as angles. Some people (and §ome mathe-
matjcians) may 9hJect to this restrictive definition but because
qf its simpligity, the gseful pdrposes this definition serves, and
the difficulties inherent in other possible definitions, we chooée
to use it. In Chapter 11 (on the circ;e), arcs and central angles
of variohs degree measures are discussed. o .

_ An angle (1ike a line) separates the plane of’which it is a
subset'into two parts which are called_the interior and the
gxteriortof theVangleTK The angle is pot’in either part. The
.shaded portion below 1s the exterior, the gnshaded portion the N

- .

1nterior of ZXYZ.

¢

-
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To be preéise, we define the interior of the /XYZ a% the
<>,
intersection of the two half planes, the Z-side of XY and the
X~-side of'§§; In the drawing the point P is in the interror of

»\&

the angle for P is on the Z-side of XY and is on the X-side of XZ.
THe exterior of the aﬁgle Z?YZ is defined to be the set of all

points wf the plane which are not on the angle or in its inteyior.

The points Q, R, and V are-all in theJexterior of the angle.

<

. A
. Two angles are sald to be vertical 1f their union is the

-

union of two lines. Two angles are said to be supplementary
* N

(or supplement each other) 4f their union is the union of a line
and a ray. (In other contexts, it will be convenient .to say
that two angles are supplementary if the sum of their .degree

measures is 180. They need not be "agjacent".)
Suppose Iﬁ and PQ are .two segments as in the figure. We
<> )
suppose PBf\AQ is the point O. )

. We wish to establish a one-to-one correspondence between the set,
N ’ ’

‘of points of BB and ‘the setsdf points of FQ. For each point X of
v .- .
B, let X' be the point of FQ on the ray OX. For each point of AB .

there 1is exactlysone such ray and on each euch ray containing-‘a -

\’-I




S

) which rephrased, asserts ' 4

L

point of Kﬁﬂ\there is exactly one point of '56. Furthermore each

point of PQ 1s on one such ray. Hence:byf use of these rafs
through Oy' we have a one -to-one corres dencecbetween the setc
of points of AB a?d the set of points of PQ . ’ .

We might also note that the coasideration above also gives a
one-to-one correspondence betdee; (1) the set of points of the’
segment AB dnd (ii) the set of rays each of;qhich has its end-
point at 0 and lies in the set which is the union of /BOA and its
interior. We miéhtédescribe th correspondence thusly:

for x any point of IE;' )

\

X {——.)05{.
- ~g
Parallel Lines. It has already been observed in Section: 2

that if two lines are in the same plane and do not intersect thef
they are said to be parallel. ‘The concept _of two lines being
parallel does not involve ﬁeasurement{‘it.ihvolves non-intersection

. A
of the pair of lines which are in the same,plane., However; most

%riteria for determining whether two lines are parallel involve-

. ¢
concepts of measurement: of equal distances or of congruent

a

angles.

Historically, Euclid stated his famous parallel pdstulate

~ e -~ -~ ~

y

}

. which contains P and does not intersect &. .o

e | °

>

¥
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4 .

.In Euclidean geometry, this property is regarded as intuitively _

) A — . ) .
clear. . ' .

We may deduce several other properties from Properties I - V:

! ‘ L | .
- Property V-A. If ﬂl and 22 and k are three distinct lines-

in a'plane M, {, and £, are parallel and k intersects £,,then k

intersects ‘?2‘ . k

i A,

°

",Z

,

. B Proof: Let P be the point of 1ntersection of Ky end k. Then
by Property V; there is only one line 1n M which contains P and

does not intersect fg. But Kl is such a line. Therei‘.ore.k must

.

.

intersect ,? ’ © _
‘g‘e might note that 1f f and f are parallel mres-“and k 1s

a line in space which 1ntersects ,Q R k need no® 1ntersect ,? for

"7 K and £, might be skewlimes.. ° .

' .
.

~ Property’ V-B.,- If /('l, XQ and k ‘are three distinct lines in a

CRA

plane, ﬂ and. {, are- parallel and 1s parallel to Xl,then k is

parallel to 12 ¢
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/ - b Al . A
- \ _ _ | \
. _ Proof: If Y inte sécted,l then by Property V A, k would
- intepsect f also and k is given as parallel to 11 - .
//A property life X;B but without the restriction that ;h@ ‘A‘

. 4

lines_all be in a plane is also true. The*argumént is more
oomplicated than that given. For instance, it is necessary)to
prove that k and f must be in the samg plane.

There are some contexts in which we want to talk about 'seg-

-’

ments or rays being parallel. Two segments or a segment and a \

B}

ray or two rays are 'saild to be parallel if the lines containin%'//

these segments or rays are parallel. A parallelogram, for

instance, 1s -2 simple closed curve which is the ﬁﬁ/on of four

-

segments with’each parallel to sbme other. Sometimes the symbol
"IV is used to mean "parallel" . For example, AB || P& means that
the Segments AB and PQ are parallel to each other. ‘ﬁhe symbolZ:7

1s used to denote a parallelogram in the same sense that A 1is

;.
used to denote a triangle. * : o

'l. ) N - "' , .. —
i EXercises 5- h -

. 1. Label three points &, & and 2 not all on the same line.

(a) Draw ZXYZ and,Z?ZY.s Are they different angles? Why°
(b) 1Is Z&X? different from both trie angles you have drawn?

2. If possible, make-sketehes in which the intersection ofttwo
- " angles 18 E e SN
) _ {a) the empty set. f (c)' a segment: N .
. (b) ‘exactly two points. (d) a ray. '

- . . - .

e e ¥ . . . . B




3% Draw two angwsqch that the 1nterior: of ' one con§éins the
other. p 7 _ d : ¢ )
-ll'. (a) 1If X angles have a verfex and ray 1in comrr?on, must
/-. mﬁ interiors have a ron-empty intersection?
(b) If three angles have a vertex and ray in. common must
+ “the interiors of some tWwo of them have' a non-er;xpty .
1nteg3e.ction?
5, In the figure, what are the following? A
(a) .(aBCUTE.
;, (v) /ABCNAC.
() BANAC. |
() /ABCUTC ppugse
R . A .
6. (a) Express the exterior of »P
. /ABC in the figure as B )
: the unlon of two half- ) '
planes.” . -Q c
\LTU)' Drawﬂa fljzg'ure like that above and shade first- one and
then. the o\ther of the two half-planes whose' Lm_i'on is
Ahe exterior of /ABC. - . § w )
7. (a) 1Into how many sets does the ynion of two parallel :Einés
" separate the plane. , .E .
(v) Describe. the sets of (a) A B
‘\ in terms of \half‘-planes. . I ~ %
| You may think of the fi:gure.. T : 5
to'the right. ) ] F .

-]

5.25 \\
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+ ¥ 8. Using lines suggested by edges of a chalk box, give an

1

example'of two parallel iines and a line which fntersects

one but not the other. .

-
-

9, Consider a set M of~1iqé§ qopsisting of all lines in a plane
pargllel to (or phe same as)-é giveh.line,;n the plane. For
example; M miéht be the set'qf all horizgntal'lines on the'\
plane of a chalkboard. Describe

4
;. a one-to-one correspondence be- -
. A ;

tween M and the set of points of

- a 1line { which intersects each

- -

line of M.

10. . Using thé figure on the rikht, list
"(a) all paifs of vertical angles, .

"(b) all pairs of supplementary

"

angles. ,
- PR ;

£ ¢

-

'5. Special Subsets of Planes in Space.

Let A, B, and C be 3 points not all on the same (straight)
. //I;. L]
line. .- K

- The triangle ABC (or A ABC)
18 the union of the segments AB,
BC and AT, 1In notation,

A ABC = BBUECURC. = ¢




ety
A

¥ ~e

- Thus' a triangle 1s.a set of points and 1s'a ‘subset of a plane.
The points A, B, and C are called the vertices of the triangle and
the angles Z}ﬁC, /ACB and’ZBAé are calléd'the angles of the
'Friangle ABC. Note that an aﬁgle\of a triangle is hot a.subset
L/ of the triangle. An interior of an angle is hot a subsef of the
“‘angle nor- i& the boundary of a half-plane a subset.of.the half-

plane, It is very common in mathematics as well as in ordinary

L4 - 4 -

language to use terminology like this. For example, we say "a
. . b
radius and a cehter of a circle" hut neither is a part of the
] L4 ’ N 4 . - 1 ‘
¢ cirgle. We speak of a triangle having an area but the area (which

<

is a number of square units) is not a subset of the triangle but
\
ﬁather a number associated with the triangle. Thus our use of
. - R
language 1s\bonsiitenu with‘previous usage.

.
N

5 It is ;ntuitively rather clear what we would mean by the
s 1nterior of theAABC. The interior of A ABC can eas(y be defined
as’the intersection of the three half-planes: The A-side of BC
the B-side of AC and the C-side of AB. The interior is a set of
points.\ The intersection of a ?riangle and its interior is
empty. The exterior‘of A ABC is the set of all points of the
plane containing A, B, and C which ére-not on the trié%gle or in,
its 1nter16r. We could aldo say that ¢he exterior of the, A ABC is
the union of the non .C-side.of AB thé non A- side of BC and the non

, -t
¢ B-side ‘of AC. . - 4
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In geometry, there are many other {igures, like triangles,
which naturally arise. You are familiar witn quadrilaterals,
pentagons,'rectangles, circles, etc. Note that the latter twp .
* of these involve concepts of measure. The(rectangle involves the
' concept of a riéht angle (measurement of an angle) and a circle‘

ipvolves the concept of a 1ength (the radius) and hence measure-
ment of a segment. ;t is convenient to have one term which refers’
to all figures like those mentioned in this paragraph We use the.
expression simple*closed curve". An gccurate definition of .
"simple .closed gurve" involves concepts beyond those we choose to
introduce here. ‘ﬁut"for\our=purposes—we\may th?nk of a simple
closed curve in a plane adgg set of points' which may be represented
by a figure drawn in the plane without lifting the pencil with
the first and last points drawp coinciding but with no other (

points coinciding.i : . C

» L] b ] -
Examples of figures which represent simple closed curves are

the\following;

A

Examples of figurés which do not represent simple closed

curVes are the following: "

5@'5@




One of the 1m§ortapt geometric theorems of the past ceﬂtury
Ls.the sheorem that every simple closed curve 1in a plane §eperates
the plane’ into twe sets, an interior and an exterior. The simple
closed curve is the bouhdary of each. We call the interior or

. . ~ ., ’ o
the‘exterior (or a similar set) a region 1n the plane.

A olzgonal path (or broken- line path) is a union of segmerits
Tl, TQ’ -——— Tn such that each has an endpoint in common witA the
,following one and there are no other 1ntepsections. Examples of

polygonal paths are:

N -

L]

Note that in either figure below, it 18 not easy to telliwhether a

%

point 1s in the interior or the exterior or even if t ere 1s an
interior or an exterior.- Cne can observe the interior or exterior
- ! »
ol

‘by shading or coloring near the curve without croésing the curve.

Fornany simple closed curve J in thg‘plane, the plane 1s the

‘v&
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union of 3, sets no two of wh;ich intersect: the set J,, the
interior of J and the exterior of J. We can recognize whether two(
pointé P and @ not on J lle one in the interior and one in the
exterior.by the following- eriterion.

If 'every polygonal path (in the pl‘ane) f"rom P.to Q intferéects
d, then one of P and Q is in the .1nterior and one is. in the , ‘
exteri'or., On the contrary, if some polygonal path from P to Q
&x the plane) does not intersect J theﬁ P and Q are both in the

interior or are both in the exterior.
; a

’ Exercises 5-5 N L

- ’bﬂ" . Py
1. Label three points A, B, and C not all on the same.line.
€& <> <> S
Draw AB,, ACx and BC. L, .

(a) Shdle the C-side of AB. Shade the A-side of BC. What .

¥ ' set 1s now doubly shaded? . . BN

. P ,
(b) Shade the B-side of AC. What set is now triply shaded? .
2. Draw,a triangle AEC. o - ,

¢

(a) In the triangle, what is ABMZAC?

.

(t;y) Does the triangle contain any rays or half-l,ine.s?) ¢
(e) In"the drawing extend KB in both directiior;s to obtain AB.
. éwg;.t is TBN AB? - 3

(d) wnat 1s BN AaBc? ~_ .

s,
‘ ’
.



.

-

3. Rei‘er,to.the figur;e on the
I‘igflt. - -~
(a) What is TWN AABC?

(b) Name the four triangles 8 . ¢ YOS
( in the figure. ;
| (c) Which of the labeled points, . .
if any,‘ are in the interior , - :
of any of the triangles? ‘ . k

i il . ’ g&
+ (d) Which of the labeled points, if any, are in the

< .-
.\\ ‘exterior of any of the trianglef?
! .

. . € .
*.{e) Name a point on tM same side of WY as C and one on

Q

4 - the opposite sidé. .

5

4. Draw a figure like that of Exercise 4. g

z ~

(a) .Label & polnt P not 13 the interior of any of the
* triangles, . o . ‘ .

(B) Label a point Q inside two of the triangles.

(c) Label a point R in ‘the interior of AABC but 'not in

the interior of any of the other triangles. (It can

be done.) . - .ot A .

5. If posdible, make sketches in which the intersection of )
triang¥eés is: -

(a)” the empty set. .

(b) exactly two points.

(c) "exactly four points. : .
. E 4

(d8) exactly five poin

>

—
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R Draw a figure representing' two simple closed curves whose
intersection is exactly ty'{o poifits. How many simple closed .
curves are represénted in your figure? L

7. In the. figure on the righ)c, describe 1Y
’ -~

A * !
the region between the simple closed Y, '
t ’ 4 v

curves in terms of intersection, in-
. terior and exterior. - R
Y 4 . od

8+ Draw two triangles whose intersection 1s a side of each. 1Is

14
the union of tbe otper sides of both triangles a simple
.closed curve? How many sirﬁple closed curves are represented

} in your -figure? ,

9. Think of X and Y as bugs which can crawl anywher"e in a plane.

. List three different simple sets of points in the plane any

‘e

-

one of .v{h’ich will provide af%oundary between*% and Y.
10. The line A and the simplg closed -
* curve J are as shown in the figure, :
(a) . What 18 JNA° - ‘”,;

- (b) Draw a'figure and shade the@h
intersection of the 1ntqr1951" - J
of J and the C-3ide 6 £, =

(e) Describe, in terms of rays the

set of points on £ not in - -

. the- 1nteri'or, of J. Z

P}
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11. Draw two*simple closed curves whose interiors intersect in

‘three different regionms.

12.° Explain why the Jintersection of a simple closed curve and a

line cannot contain exactly three points if the 'curve crosses

o

the line when it intersects it.
13. . (a) In the (plane) figure on the
right dgécribe a one- to one

1
- correspondence between the

set-of rays with endpeint
at P and the set of points

) of the triangle. . . o
(v) Descﬁibe a one-to-one correspondence between” the set
-~ ¥
of pqints of the triangle“and the set of points of the

othen simple closed curve. . °

1k, Draw two éimple closed curves, one In the interior of the

other such that for no point P do the rays from P establish

a one~to~one corgespondence between the two curves.
/ ; . Il
h 4 ’

» N . - ' I'
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» Chapter 6 ,

. Measurement BN

1, Continuous Quantities and Length.

Ay

There are some numerical questioﬁs for which the correct
answer, in the nature of.things, must be a counting numﬁef or
zero. -How many children are in the 8th grade at your school?
How many automobiles are registered in your’state? In eifher'
case; a numerical’answer which is not a whole numbeg is ridigu-
1ousi' A quantity for which a counting process as such 1is

‘“Qappropr;gte,is called a discreté quantity. — .
. There are some quantities--called continuous quantities--
_which require measuring and.for~whii%rcouht1né as such 1s.1n& '
appropriate. How long is the house? How hot didﬁit get yester-
day? “hat is the aréa of the rug? Questions of this type have
numeri?al answers which are obtained By measuring (or e8timating
measurements). Answers may be gi%eﬁ in terms of wh01; nuﬁbers

or they may involve rational nulbers or fractions. Answers. that
aré\givén ar; not absg}utely precise as such. The accuracy of the
number used is usually reétricted by unevenness in the dbject
measured, by the measuring instrument we use, and by our owﬂ

”

intention in approximating an, answer. - ) , —_

3
.




In Chapter 7, we shall investigate accuracy and precision of
’measurement in more detgga In this chapter we confine ourselves
to the meaningéof measurement.

Among quantities we measure are length areg, volume, éngle
eize, temperature, speed, '3oltage and duration of time (to K
mention only a few). In this chapter and book we are primarily
concerned with the measurement of geometric quantities 1like

length, area, volume and angle size. Many of our observations are

epplicable to consideration of other quantities but wexetress,the
geometric aspects. : . ‘
In the previtus chapter we obserbed t%at geometric space and’
its subsets 1like 1lines and planes-were abséractions of physical
objects in’tue world about us.

abstraq;ngE~3£ straight edges (but withou% limits or endpoints).

In particular, lines were

A segment (wuich is a subset of a 1ine) is §n abstraction of‘sume-

thing l1ike an edge of a box or a taut string stretched between two -

. 7 objects (points). If we want to measure thelledgth of something

e .
« in the physjcal™world we have an analogous geometric problem of

measuring the length of a se

nt.

Thus in studying the process

\

2

E

“

of measuring.theﬁlengths of physical objects we

tudy the process

of measuring-segments in geometry and, .even\Ymore important we
study the meaning of length in geometry (of distance between pairs
Our study of length in geometry, ‘then, éives s in-

0

gf points).

sight and understanding of the measurement of 1ength of any
J

L
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straight object in ihe world about us whether Epe object be a piqL,_J//

-

a house,_or the,sfraight’line path between two.sthrs. X o
In what follows we try to develop fundamentalg?elation§hips

between the idea of congruence, the process of meadurement, and

-

the "coordinatization" of rays and other geometric sets. The

approath 18 one of emphasfzink concepts and developing under-

standing. R - o
Ve

Length, Let AB and PQ be segments represe ‘hs below.

" .
\ -~ __P,//—’Q‘.'

Our first consideration may well be to ask "Which i1s longer?" ¥

Later ‘we might ask "Which is longer and by how much?" There 1s

something intuitive about comparing two segments fb see which 1is

1ongér.‘ But let us be more specific. "By what device can-we ‘

~

co hem?" : )
mpare them — ;

-

N

In traditional Euclidean Geometry, there 1s a posﬁhlate to
the effect that a geometric figure can be moved withoGt changing

its size or shape.  This ally think about 1t, is a

rather vague way of”“expressing an idea. What do we mean by

"moving" a metric figure? For a ségment, we think of using a
-

compass or a pair of dividers to "move" the §9gm:zz. But even so,

the motion--tﬁe process of moving a copy of a se nt--isntt
- o

P

actually what we have in mind. A better'ygy,of describing what

i8 meant might be to say that we can construct a copy of the

s A
P : . . :
. - \ /
) /
g
¢ ) _ q.&'
~— - . +
81 -
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ka
figure (segment) near}’on, or in relation to some other figure.

Even this isnt't really what weumean.' From some points of view,

N

- 4 )

v the construction process”is not important. What is impontant is X
that there exists a copy of the figure in any other place where we
;want it to be., . ' " ’

\\/éf?Now what do we'mean by a copy of the segment PQ? We mean a
segment P'%//ﬁhich is congruent" to PQ, i.e., a figure of the same
size and shape. In this treatment of geometry we choose to start
with certain postulates about congruence which are assumedqxo Re
*true. Our congruence postulates'(properties) will concern seg-
ments andcaggyes This 1is more elementary than having congruence

\
postulates concern all sorts of figures. We use the symbo} "”" to

5

mean "is congruent to".

'—__._——___.-———-——_c——

» there exists exactly one point X on the ray ﬁﬁ such that AX PQ.

.A L /Q/\ | .<\‘-il

Notg that this property is a somewhat more explicit way of telling ~

us that thp segment PQ may be freely moved without changing its

size or shape. Later, we shall see how using this property, we

can stgte a more gentral property about moving any geometric' ]

figure. ) : . ‘ o
if,- as in the case of our illustration, X 1s between A and B,. -

,then BB 13 longer than ZX and hence longer than Pg., If X were B

.




* (1.e., X and B were names for the same;bbint) then B and g

would_be equally 16ng.> If B were between A and X, then ‘AB would
». . " .

be' shorter than X and as BX 2 TG we would say that KB would be

«. shorter than FQ.

3 - e

. P '
x : . ///6_'.'§

A .

) ~

B ¥

-
- -

,JThus Property I lets us compare any two segments as to

length? Ina full treatment of geometry, we should have to state

_ other assumptions about comparing segments 1nclud1ng, for
instance, that if PQ 15 longer than 28 and 75 is longer than RS °

then PQ 1s longer than this book, ‘we shall tacitly assume

ﬁ/Ln
such further properties W thout listing them. These properties

-

concérning comparison of 1ntervals areuexactly what one would

expect. .

| S

.

One other example of what wé accept is that we can compare *

.- TB with PQ or compare TG with 7B giving the same result

’,

Y (1) We lay BB off on PG. . o
QA" S
" ‘ P X ‘ : ; R : l
[} ?X m . ‘ N .:
./), Thereﬁgre ?ﬁ-is longer than AB. " S
. ‘ . . i
o (2) Ve lay TQ off on ITIS A o »
s -
" P L .
Y » %3, {Therefore AF 18 shorter than.Fq ’
" and hence.TQ is longer than A5, y
, | - ~ o
) . N g‘! ) = Ul
] ' 5 N . B :
-y . : , . : o
r. . 1 83 - .
- * R \ . ' /’Z . s

o

&

~
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_ - Exercises 6-1 T
List five "continuous quantities" not given in the text.
With a compass (or palr of dividers) compare the segments

below with respect to length,
(a) ’ ' g

'(n) /

Is T B of the same 1ength&s 1B?

Describe the process of comparing BB with itself. .

a

Try to describe 1in your owns,vords what is meant by saying
‘that AB may be "freely moved". (Improve on the text if “you

can.) ! ’ ’

- °

. . .
L2 N ITs o,
L 1 y

3 i K} .
2. Properties of  Length. °

et 'P'Q bé~a segment. There exists a subdlvis}ion of FQ into

t "segments PX andJ@ 50 that TX.2 ¥Q. This observation 1s
i tanta.mount' to 1etéing X be the midpoint of T§- (ana’ asserts that .
' such ,a"gnidpoint X exists) - Our intuition tells us also that
there exists a subdivisien of FQ ,intb three non- ovérlapping .

,congruent segments whose union is Q. (The segmen‘ts are called

(4 1 4

o

k -
non overlapping if no two have any interior point of;elther

-

1 . o '
in‘common. : o ! o“/ o o~
N | ° . ‘ .

/
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property should be true in geometry. ‘ .

‘

Pfoperty II.Q,Let ?Q_Re any segment. Then for any counting:

number'k,‘there exist k nonaoveriapping ségments whose,union is
4
3 and such that all k segments are congruent to each other.
2 L
‘ In dealing with the.%ecimal representation of the real number

system, we are particularly intérested in the subdivision of a
segment into 10 congruent subsegments,‘i.e.% segments,which are ’
subsets of the original., FornnoY we can begin to see how to,
assoclate real numbers with Segments. The real ndmbers'will
represent lengths of segm nts. We think of the segment PP. below

-

as subdivided in%o 10 congruent non- overlapping segments.

./" /—.82,
o eeviessgane

P p.l_/?z s faPs B Pr B _P Pl

~

H

. We may think of the segment Tﬂf as having length 1.. The segment

PP , would have length 1/10 and'FF6 for instance, mould have

- <

length 6/10. s : ]
Now each.of*the segments of length -1/10 indicated may be
'd\psider d as similarly subdilvided into 10 congruent subsegments.

] Tﬁus, we ghave segments of length ,01, ;02,_.03; +e+ and so on.,

For exam le, thelgegmgnt PP. ]
2825
L - ””‘"’Q‘ -

- Let us note a fundamental distinction in two different ways -

- I

of saying something. If we say "Given a segment, we may sub- Ly

“divide it into 10 congruent subsegments®, then we are forced to®

" 1




» L

.

think of the process of subdividi‘ng‘ a segment. We maﬁr feel that .

.

- we could perfofm the process only a certain number of*imés‘. There

* Mell be some last occasion at.which -;}e could perform it.

v

Howéver, if we state the propefty in the form "Given a tfg-
2 ‘ment, there exists a subdivision of it into 10 non-overlapping
congruent sgbsegfnents" then there 1is no 'process 1;'Jvolv1ng' o-ur; own
aétio’n or any time element. The subdivision exists whether or

not there 1s any practicable way 'for us to do the subdividing.

Thus we may speak of the number .3333 ---- (which 1is -§) as
being the l¢ngteof the segment from P to that point

(3) whjch is in the segment from P-to P,
hd - 03 ou

(b).- which is also -in the segment from P to P v
.33 .3

(e) which is also in the segment from P to P,
_ , .333 .33 .

and so on.

-

,h@gjarly the next subdivision of any such segLent into 10 congruent

subsegments yieids ‘accuracy "to the next decimal plage. Thus the

point P . should exist and the length of the segment from
763333 ~—--




'

-
s

Same point we get by subdividing P *? into 3 congruent subsegments. -
- 1 :

‘_l we can similarly cqrrespond the points of a ray to¢ the positive

3

- 6 > ’ - P
-~ 2 o ¢
6-9 . . - : //‘ ]
- . yd
. v e ’ i ° . ‘ ) ﬂ;(
PtoP . is .3333 --- = 3. .This point happens to h)’the )
.3333 - - 7 P . . ?

A We have interpreted the positive real numbers less than 1 as

lengths of segments laid off from P. It frequently is convenient

N

'to think fead of each point of the segment as corresponding to

,

a real'n ber’.-that number which represents the length of the

segment from P to the point. By also using numbers gr%ater than

. (or zero) re3l numbers.
Another way of describing this 'point of viey is to say that
we are coordinatizing" the ray. We are establishing a one-to-

\ -

one correspondence between the set of points of the raykand *the

set of positive real numbers/and zero. The point P corresponds

4 l/ (\

to zero, * - T ) (- .
In order to asSert the existence of the one- to -one ¢corre-

-

Spondence whieh we are ‘describing we need to note another baéic -
~

property of g ometry. " . o N fﬁ .. .. J
. L _ i e
Let' XY bl a.ray and let BB be a [segment. Let X, pe the
point of X¥ for which" 'ﬂ‘l ~ 1B, ‘Let‘\ be the point 3f' r which

J
| ‘ * :
7xlx 2 1B iB. (hy considering the ray wi h endpoint at X ) Similarly

.let 3,be ¢he point for Which X’X’ I— ' AT——if;ﬁ—*B
- o - ! *,
: ' . " ) .
: e i . S .
X. X, X - Xy . X, % , -
J ! o« / - ( '
. & ' ' ./\
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-

In this way points Xl’ xza X3, Xu; .. may be considere@.as

existing.

>

- ' 4
Pnoperiy III: The ray XY is the union of the segments XX,

X . ¥ X.. XX - ;
xlxz, X2X3’ X3x!¥, .ooo .

-

This property says that each point the ray is in some ¢
segment X 1+1 or in other words that the successive reapplication
‘ of the segment B to ¥ covers all of ¥¥.

Thus we see that the one-to-one correspondence between the

"

set oghpoints of the ray and the set of positive real numbers and

zero can be set up as follows.. X 0 ) L <
xl<,—> 1. , . -
. Xpe22 A
. * 2

A . - . A
The points of iil corregpond to~the real numbers fromLO to 1,
- the points of'izfa to the re§I~nambefs from 1 to 2, etc. The
‘numbers.nar@ called the coordinates of the points. . | LN
The rather 1mportant o Servation,we are now‘ akiné is that
for, any posfitive (or.zero) eal number (i.e., a number Which'can'
be represented as a decimal expansion) there is a c%rresponding

point o# the .ay, f? and - for any point of the' ray there 1is a.d>-

corresponding detimal expansiop a6;> *
The positive (or\Zeroj‘reai\nggaers cafl ,be thought about in

elther of two equivalent ways- :

e ]
Y
. ’>‘-
k3
.
’
;
&

¢
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h (1) as denoting points of thg‘ray X3, or
(2) as denoting lengths of segments on i? with one end point
- "of each at X. -We,let XY or m(XY) .denote the fength of XY.

In (1) we are coordinatizifg the ray. In (2) we are setting up

s
.

the principles of measureméht of length.

~

| The coordinatization of‘the ray (or its analogue in (2))
involves three basic properties. s C )
(a) Order 1s preserved. If P, Q, and R are 3 points of the
gf’; ray and Q is between P and R, then the coordtnate of Q
’ is between the coordinates of P and R (as numbers)
. (by: Distance is preserved L If BB and:gp are on the ray and. °
B 2FG, then the/difference in the coordinates of A and
¥'< B 1s'equai to the difference in the coordinates of P,
) and’qQ. - - ‘ j o
1¢) Distance is{ additive., If B is bei:,ween A and C, then
. AB + B = ac, . ‘ .

ray c?n ge coordinatized? and thus can be used as afruler. . Hence
1t says that & ruler exists and can be u%ed.,
Y

The length of. a‘segment is tho%ght of as a number--the unit

e
in the geometric plane being understood. Note, then, that,, =~
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wiﬁﬁogt reference to a unit. But ir'applying our knowledge of the

N . .
principles of measurement to the every day world we are, in the

nature of things, gitally concerned with the unit of measurement.

_?he_unit of ‘measurement should alwayé be specified in practical:

>

problems. We th%nk of a length of a physical-object as a certgin
number of units and the unit is specified. The number may be
called the measure of the length of the physical object.

’ 'In 1light of these first two sections %ﬁ now can observe that
the statement "AB ¥ PQ" is equivalent to the statement "AB £pq".
In other words if tyo segments{are eongrusgt; th;n their lengths
are equal; and if fﬁo segmenﬁylare o} equdl length, then tﬁey‘are

congruent ' We can use either type of language as con}enient.

" - Note, however, that the statement "AB = FQ" means something quife

different ‘from the other two. &B = PG means that 'Kﬁo_i_g T.Q As a

consequenice, A is P or Q and<B is tHe other.

! -

Exezcises 6-2 . s ,
- A

» , ® ¢ .
1. Graphically describe the location of 7 to 3 decimal  places,

Brdgyet'v between succes8iv Anteéers, tenths, hundredths

LY .
_and thousandths. -
Do the same for V2. . - ::‘/V‘




3. (a) Using the figure beiow;'give an example of statement (a)

. . about order being preserved. ‘ . -
L. P Q R S- .
P 3 1 Py L 4 s s ‘l I Py . ~
- T T

, X "v_x ) T T T D g 7\;-
o I 2 - 3 : 5\

“9

(b) Using the same figure, give an example of sta emerf (D) &
S about distance ‘being preserved.

B h ; ) hd oy
(¢) Using the same figure, give an example of statement (¢)
L)

about distance being additive. z '
4, If we subdivided seggents into just 2 ‘subsegments at each
stage we would have a process suggesting the binary
" representation of the real numbe& system. Explain and draw
‘figures. (This problem 18 designed particularly for those .
‘who have some knowledge of/the binary system. .It could be

used to develop such knowledge ) e .
»

. -
[
- Ll

3. Angle Measure., .

-

s,
+ In ‘the previous chapter we,have defined an angle as a set

of points, specifically as the union of two rays having the same
endpoint and with theltwo rays Fot being 04 the Fame lhneo In

the previous section, we 1ntroduced the concept of length or.
|

t mehsure 6F a segment. In this section,we similarly introduce the

. \ :
concept of’measure of an angle. ' £ ’ -
I order to have & notion of size-of angle (or angular

¢

?neasure) We first must have a notion of what we /ﬁean by saying '

-

-,

3
'
-~ I /
| .
i ™ hd
. - . 4
N .
e - T s .
L}
P .
- e R R o ‘
P e
) . ‘ Py 5 % LN ko
' "y pad) 4’%»\ EN e
. v & . e 3 * ¢
. % EEE T & S ¥ : .
- . - ’
T l -~




. glven refepence object (point or ray) and dn a, given "direct%on"

. 5 <> . ..
» +for Q on the D-side of line BA. Then the ray’covered by dﬁ would

~_ 6.14 7 d

v ., -
o . ;

that two-angles are congruent (or have the same'size) or that one
anglé is larger than the other. We could ta:k about noving angles
‘ around or’conétructing copies of them but as before, we'find it
more convenient simply to/assert the existence of certain angles.
- Property I-A. 'Let 4PQR be an aﬁgle. Let Bk be a ray and
let D be a poinﬂ'not on the 1ine Eﬁ Then there exists exactly

-

one angle, /ABC, such that [ABC £PQR and C and D are on the

iy

same slde of the line I3 (in the plane-containing AB and D).

-7 4
A .
» / C 'D
! A .
7~ r
B < ———>
. A , ’
- \ - B ° o
-~ .

In old-fashibned terminology we can think of movihg ZPQR
80 that ray QP falls'exactly on. ray EK and ray éﬁ falis.éxcept

.

q
be ﬁE. Thus Property I-A 1s s"ﬁ to be both intuitive and .1ike ,-
’

T .
.

properties of traditional geometry. ) . o
‘Properties I and‘ﬂ~A are quite similar. Each asserts’the .

i

‘existence of exact%y one-figure of a given size starting from a

:  YTrom such {'eference object. - - - % - T, /.
Property iI-A tells us In effect how we can compare two
- [N . '
© ;, angles to see which/is larger. *
A ‘« N - ° ¢
33 I . é . 3 |
2 d :‘% ' L .
% % é:g ; % IO ¢ *
gz -7 Q K & S N " ’
bl 53 o Ry - i | R
5 ¥ 3 2. * e \ \
P = 92! ' . C
"“ g f - 3 ¥ - ) v
EER g\é \ ) i ' -, "
‘ i ' T ; 3 o
5?*\«. E' P ’ - ~’) - ~ B




‘Referri g\to the figure above, there is a copy of [PQR, such,
thatﬁ is’ a ray of the copy and the other ray ﬁ lies (except for
Y) on thé X-side of ¥2. IfX is,1n the ix}terior oi‘ /FYZ then
ZPQR is larger than /Xyz. If X 1s on the ray T then[ ZXYZ.
And 1f X'is in the exterior of /WYZ then /PR 1s ‘smaller Yhan /XYZ.

*

‘

. c .
s Jroperty’ II,A Con der /ABC. L t kbe’ be any cdunting ‘number.
Then there exist k congrue ’6 angles which §1tbd1v1de the\ihterior

Ry -

'*:\ -./v

|of YABC as follows ( ,:‘,;’ RN 9
(1) [Each angle has B as a vertex, EH 5:;‘}«\{;" Vs . :
(2) /The interiors of the a.ngles of the sﬁ“"‘"ision do.not”
intersect. o - ; L’\\E‘f '

| - v e
(5) » The’ un}ion of the angles and theﬂr{in'cerio&-s 1g _Z_ABC

o » . - .

;' toget}'ler with 1ts interior. / P o

R B ] l v, ::" :‘ 5 . . ‘ *

- o ‘ ' ').‘ .
' i’ I ,
- N
) . ,.}
. N e
. . gy
' N _mr' { « k

s
)
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, Using this property, we can coordinatize the family of, rays

2
which have endpoint at B and lie on ZABC or in the:interior of

-

\ o

/ Finally we have a property which is like Property III in some

mBC. Thefocess is like that of. coordinatizing the set .of points

of a segme

respects but different in others. ' ’ L
Let BR be a ray and 1et~£PQR be-an angle. Let ﬁKl be a ray

such that /A;BA is congruent to /PQR. .

A . - R.

" Now consider ray EK ard let EK be a ray with A, and A on
" opposite.sides dof BAl such that £A2 1 = ZA BA = ZPQ,R Similarly
- there exists a ray §K3 such that /A BA, = /PQR and A, and Al are
- <> g ’
on opposite sides of BA,. Thus there exist rays ﬁKl, EKE,‘ﬁKs, . .
EKH, .eo With similar .properties. e ) ; , . i
nof

, Property III-A. There 1s some number n such that A is

I on the Al-side of BA Aut all points A1 .;., n-1 2re EE.EEE'
1—side of BA. Furthermore theri is some angle such that the \\—//)/w
point A2 of this coristruction is on the line BA (but not on the T

I‘aY BA)q § ‘ \ . ‘ e
The first part of|this, property says that fﬁ you reapply any

r
angle endhgh times, yo will "get, past" the other ray of the 11ne !
|

you started wité? . ' , {\\J
: ' Ve
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.

The éeconq part.of this property assérts that thére is a

- -

right angle, 1.§., an angle which 1s‘congpuent to ifs shppiementf ‘
We'%ay tﬁat two lines are perpendic;lar to each other if the

union of tw6 rays of these lines is a right angle. We use the

_-symbol | %o mean "is perpendicular to, . o y
As in the caéz of parallels, it is.con?jhient to talk about

lines, segmenté;anéwpays be%pg perpend;cular to each other. For

gxample, two réys or segmenés are pe;pendicular(to each other if

the lines containing them are. B

Fram Property II-A, a .right angle may ﬁe.subdividéa“}qgf 90
congruent ang}es whose interiors dontt overlap. Wﬁ,ﬁpeak of an” -

angle of such a‘subdivision as an apgle of one degree (or 1° in

4
symbols). It followys from gonsiderationé {ig? tho'se for segmenti\\
. that any angle can be measured in terms of an angle of 1° ‘and

. that the "degree measure" of an angle will-be a positive number

pu .

between.0 and 180,

~_ .  Important Agbeement. We agree to use the terms "degree

measure of an angle” and "meagure of an angle' synonymously. The,

measure of- an angle, then, 1s a number bgtween O and 180 and the
.

O 0 nded not be used.| However, it is not "wrong"

'degree symbol

O n

to use the degree symbol and /otRers may sometimes use it

for emphasis or clarity. In notation} we write m(/ABC) ab the

|

B An angle isefaid to be acute if its (degree) measure dis less

¢ - measure of ZABC

than 90 and to be obtuse if its (degree) measure is greatef’than
« T f ? B 1 . »

9. ’ | -
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" are sayin

5
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L
It is not qifficult to“see that in applying Property II A -

-We could have used a subd:hrision ofé right angIe into any. = v L
particular number of congruent angles. It is something of an, 37
historical accHdent that degree measure i3 used for~ empressing P

4
the size of an angle, We could Just as Well have used any angle-

<

as our basic unit (or reference) angle.

~

{. C
- Another way of looking at the result of ‘the coordinatizatlon\ESzQ'
of the family of rays emanating from a given point and lying ‘on
one side of a line is to yiew the rays as in a’ protractor. We

that an (abstract) protractor exists as an instrument élg\ ‘

\ , - ’ T )
ang]eso ’ :' © > a ri P \? )

Th re are seVeral important properties of geometry w@ich mgy' -~

Y

be to sidered a9 following from ourja\gumptions <here., . : o

~

) (1) The sum of .the }egree measures of an angle and its
|

L]

-~ . + .supplementyis 180,

. B T

. v X
(2) If two angles have the same degree measure, they are
SR i o

.‘ . El { cro'ngruent. , . ) ~’ N . ‘ R ‘a'

. C, ;
(3) Vertical angles are éongruent (for they are supplements

of the samg, angle and hence by (1) have the same degrbe

- ‘measure an by (2) are, therefore; x ngruent. 1' “ Cow e
(4) If two ang es are c0ngruent,4they ' e °the ;same degﬂee )
\ measure., . . : , ’ .-

., (5) Angle measuré‘{s additive. 'IfVD’
is in the interior of#/ABC, then
m(/ABC) = m(ZABD) + m([DBC)

»

——
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/ 5.,

the figure.

1 N )
.Exercises 6-3

* » ' .
Draw two gngles and compare their'"siges" by the process of

Y

the tex?. . ' .
Draw an/ anmglje abput 1like the one
in “the ifigure, Subdivide 1t into
6 congruent angles as in the text.
You may use a protractor or do it
approximately.
of the angles of the subdivision
bears what relation to the "size"_
of /ABC?

-
Draw an angle about like that in
Draw a ray.\ Use the

procedure of Property III-A and

find the number "n" for this-angle.

The. "size" of one“

b A

Try toyrestate Property II-A more simply.

Try to restate Property IIIPA more simply.

6. Illﬁstrate by a specific mumerical example whaf is meant by

°

-

linear measure (length) and,angular measure.
standard Begment fén angle), as a unit any segment (or angle) can

'be measuned.

”‘"Angle -measure ‘is* additive.

- m——
~

*

‘&. Area.

)

J

In the previous two sections we have developed the notions of

With respect t6 a

In thig section, we consider another type of
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geometric object--a closed region--and try to measure it with
respect to a standard closed region. "Our early discussion is o«
concerned with various types of closed regions. We lay ‘down
principles we shall want to use_ in later chapters. However, in

- .
this section we shall develop formulas only for rectangular regions.

4,

Any simple closed curve in the plane’ is the bounda?y o?)ﬁts
interior. The interior is sometimes.called a region. We shall

' call the interiorltogether with its boundary a closed regiona

Another way of saying this is that a closed region is the union of

~
LYY

- a simple closed- curve and its interior. . -

»

; ////“\J“ e

e

. The figures above reyresent closed regions. How can we
L]
tompare two of them to~?ee which is"larger? The situation is not

« +- quite as simple as in the case of a segment or’ angle becauge the
. o - ; .
. figures are not all directly comparable to each other. But we

Al

shall see in this section and in Chapters 10 and 11 how we can

\
( .
We shall use the-term "area" to describe our idea of the ’

get around.this difficulty; . N e |

7 R 4 , . N f
"size" of a closed regién. The area Oof a closed region will be a

N, . U
" number (or a ‘number of standard units).

» iy s

i




6.2%

4 -
v . N

. . . £ - .
As in Sections 2 and 3 coneerning congruences of segménts and

- A

’angies we make a numbér of -fairly explicit assumptions aﬁout

closed. regions and area. All of the properties we shall state
S : N . .

y e

‘a€“3ur intuitionetells us to expect. S

Propefty IV. Given a closed region, there exist‘closed
e _— T

‘regions congrueht,fgwli where appropriate\\i.e}, the ‘closed region

3

may bg "freely moved" in the plane. ; .

- -

In Chapter 12,using the coordinate plane, wé shall clarify
p h
the phrases "where appropriate" and "freely moved". For now we

V . .
regard them merely as suggestivetof the key idea.:

’ . “> . ' '
Property V. Ei two closed reglons are congruent to each

gihér; then they have—equal areas:,
. 5 " T ,

Property VI.'fShppose:é.closed region is the union of non-

overlapping closed regions. Then -{ts area is the sum of Egg'éreés

? ~

"of the nén-overlapping closed regions of which Mt is the unions
_—— — - — — — —_————

N

* Now we come to the question of what we ought to use 'for a

"standard" ciosed reéion. ‘Several possibilities are represeﬁted

- < \‘
in 'the figures beleow. . .

4 . . - . ‘ -
r N -

3

\\
\\\\ X

-
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In the case of length, and angular measure, all of the obJects we

Ny .
were measuring. looked comparable so this question d{d not arise.

A fundamental‘criterion of a “standard" closed region,for

’

. \ , . *
area ought to be that the closed region can be expressed as the .

union of "small" cong?pent non-overlapping closed regions of the

same general type. ’

If a closed region satisfies this criterion then we. may »
break it up into small non- overlapping pieces and we Would know

how to break these pleces up into even smaller ones. A closed
¥

circular region is not suitable. We cannot easily break it up

. - '

into smaller non- overlapping closed circular regions. Try it.

A rectangular region would satisﬁy the criterion. i 3

I .

. T_——.t_.—__.

. |
__—_TT"_——_-

- e CN -

“union of smal%er non- overlapping rectangular regions all congruent

to each other., In fact the, rectangular region is delightfully

»

sultable foerlr purposes: and we shall use it. But to make things

even easler, for our unit we shall use a special kind of rectangu- .

lar region-~aks\uare region. We want the sides to,be of equal

4

tlength. ‘ " ;

The square (or rectangular) regionh has another fortunate
. ) *

characteristic. "It Qurns out that we can describe the area E N

j - T
| 3 )



..
b

as the prodyct of two lengths whi are reedily observable am?
' measurable. Thus‘we-can redugk many(problems of computatioﬁ of

~—

.areas to problems of lengt

There is another sumption about area that we want to point

out. . , .

Yoo . ~

Property VIIZ With respect to a given rectangular region as

.-...

> o°f; this otl;/region.

. o ;hi property says that we must get th& same answer no matter

.t unit, then, for any other closed region there is a unique area

- 3

how w- fuse our given square or rectangulaf region as a unit with

reSAect to Properties IV - VI. We shall find-~it convenient to C
o /-e one narticular procedure. The answer we get is the same as

/ that which we would get by different but legitimate procedures

It #s very common and convenient}to talk about the area of

?.“rectangles,‘triangles, circles,_énd the like instead of talking
. “spbut® the é%eas’of‘rectangular'rééions{‘for'examplev"As&long~aswﬁ“%ﬁ%
o we' are aware that it is thi region>(and not the simple closed‘

curve) which has the area there\seems little confusion in gsing
+ the traoitional'language._ In what follows in tnis tookv;We shall ° »

use\Eéyh t&pes\of terminology upon oécasion, using the "region"n

languaae when there is need for emphasis on this congept.

-

LIPS

The Area of a Rectangular Region. In dealing with , ) ,'/
rectangular regions we assume a\unit length (or segment) t6 be -
) given. The*rectangular regionkhas fourisides. OppoEite sides are
. \d't - ) L) J ‘ * . ~ . q‘ . ° ‘. Re // ..
‘\ ¢ : * . T ° / " b
/ » .
-’ I el NN ,“ .
- - "‘,ﬂ? . . ) ’
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of equal length. We may descgibe the rectangular region by giving

two ‘numbers which represent the lengths of adjacent sides. We use °

' the notation (a by b) to denote a rectangular region with® lengths .
off adjacent sides a and b. The pr@pdrties of rectangles we use

here and which we have not yet developed will be explained‘in i o

Chapter 9. D o ‘ ' ,L‘»af
‘! a -h=3 3 R
) / ] \
’ : . bss o
. . ° Y > ) .
-Suppose we . havp a rectangular region which is b by h. In T

the figure b is the base and h i; the height. We seek to express

the area in terms of SQuare°units, i.e., in terms of a‘square

" . L4

region whose side is 1 unit. s /

{ If b and h "COme out evenly" in terms-of whole nymbers of
) ‘
our linear unit then the problem is easy. We tan de ompose the ‘o

rectangular region into beh non- 0verlapping squarg unit regions

(all congruent to-eakh other)? In'the figure b ¥ 5 and-h = 3,'so

the area is b « It or 15. Te, ' g : . ’
» . Our intuition 4s based on’ the "wnhole nutber" situation we- U
have Just'consi ered. 1If, however,,the base ‘or the height is
not a whole nufiber of units the logical argument ﬁor the area as
b, h isqmore domplicated. The result hoWever" is still the
same. We seek to*Eustify'the for ula for any‘db and any 'h. A 'f_ K
N "e . - J ’ - ¢ s e .
\oﬁa - - . 0 . . ~
) € - bl ". [ » »
- o ] . . . 3 . : ]
i -7 “ ’ -
0:. N . ‘ > * ”... - - i
S l()Z ‘ A .
.: o te 15

o
T




e 6.25\

» a“

RN

In the general case we are given two rectangular regions B{«
and R2 We wish ‘to expre\ss the area of R2 in terms of the area
of Rl (Ultimate.ly we are, interested in considering Rl as being 0

‘a unit square region, %ut 'ﬁe érgument 1¢ simpler without

s

> . this assumption beingfiade until later.) ’
' N .ﬂ ! {'w ~ ‘. \
\‘) ! N
S N , .
R, 3 R
L . 2

W ‘ ‘ t
- \ ] '0 i *

-y We tonsider this problem in. cases and in this way reduce -a.
motre complicated problem to two easy steps. . v
Case I. Suppose Rl and R2 have a side of each eqhual to a ) -
v side of the other afd further suppose the other side

? .

of 'Ry is of Yength 1. 'R

2

~ 1 1is (abyl) andR2 is |

°(a by b)o . . e

.
. .

From Properties V and VI we know that if we regard R1 as the -

union of 10 non- overlapping rectangular regions each beimg
L p ) .

‘!.




“ o ' s, - - Y
B

: , . 1 ;
(a\by-fa) then the area-of any one of these is 95 (Area hl), (for

_the areas of these 10 regionSAmdstrbe equal and the sum of -their

.

areas must be (Area le ‘ T .

’

v
Q.

e Similarly, the area of a mectangular region (a by IUU) is
IGU (Area Rl), and so forth. ' S R .

- Now if Pvand Q 'are vertices of the base of R2 we may regard

<

) P6 ds coordinatized With unit length 1. Hence PQ = b. 'Consider
the processlgf laying off non- overlapping copies of Rl on R2
. starting from the left.hané edge and then, having laid off all the

] -
} 1 .‘ . .
; ’ ' . -,

» . . 3
. - » Dl

P Q . ' <
copies of R, thattare possible, we "lay off copies of an (a by T—)

’
-

rectangular region int what is left of Re, and then copies of an
(a by léo rectgngular region, and go on. . This process is
exactly equivalent to the process of finding the coordinate of Q,

namely b, ‘ih terms of the unit length In other words, {Area Re)

\must be b*+ (Area Rl) ' -

‘Case II. Suppose R, is (l hy/l) and R, .is (a.by b). We

2
< . wish to express 'R, in terms of R;.

. "

. .
« »

L -
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v

r

We consider a rectangular region R3 which is (a by 1).

NoW from Case I,'consldering Ry and Ry

(Area R3) = a * Area Ry, ° . »

»

and considering R, and Ry . : -

Area R, = b(Area R3)1

But then = Area B, b(a ¢ Area Rl) N

b« o« Area Rl.
IP we now agree to adopt a (1 by 1) square region-as our unit
then Area R, = (b » a) in terms of this unit. In our other

symbolism, Area R2 = b * h.

‘ ) - R
Note that this gives us the usual formula for the area of a

rectangular region .in terms of the ¥ase and altitude (or height)

of the reglon.
e . ' * Exercises ‘6-4 o ,
) 1. Explain the distetdon between an "drea" and a "pegion". .

+ 2. Which of the figures-below are the boundaries of regions
which they determine°

TON D

3. If possible, expreéss a. triangular region as the union of four -,

non-overiapping triangular regions all congruent" to each -

. " . other. (You will have to-make a-lot of implicit assumptions,

some of which we will, justify later,) ‘ .




¢
»
. o

N "™ ’ -
4, Supposg b.and h are not .whole numbers.
’ ~

-

~

Explain in your own words why the area of a'rectangular —_

region (b by h) must be b « h.

[ .- 3 . 7
L -

5. * Volume. !

In the preceding section we have observed some of the ideas
underlying tne concept of area. In this section we note that
analogous considerations are applicable to the concept of volume.

[

A region in geometric space is the interior of a sphere (vall)

or cube or such object. A closed region in space is the union of

such a region and its boundary. The figures below can be c¢on- -

.

sidered to represent closed regions in space. o -/

\ 4

Associated With a closed region of such a type is a number (or-a
number of cubic units) called the volume of‘the region. In
- geometry the volume is a numbgr whereas in practical problems a

! : ‘

Jvolume is exptressed as a number of cubic units, there being some /

solid cube which is regarded as having unit Yolume. . ’

, . !
-« )/ . - - .

. 1t S : '

[




\the volume of the closed region in space bounded by the cube.

" region ma& be "freely moved" 1n space. .

o~

r A6.' 29

Our first concern about siae (volume) of two closed regions

is to compare them to see whichgis larger. Comparisons of closed

-

regidhs in space are even harder 'than comparisons of«closed region3|

in the plane because of a greater diversity of types of f'igure.

HOWever, as In the area case, it turps out that a rectangular
[ 4
figure is easiest and best to use for d\:éloping both the concept

of volume and the putation of it. .We use a rectangular

woew

parallelepiped (or box) for this purpose and ultimately use a cube

abathe simplest type of rectangular parallelepiped. -

-

Technicalfy the terms cube and rectangular parallelepiped

refer to the surfaces,of solid objects in the same sense that

square,and‘rectangle refer to simp?e closed curves. But analogous-

to the language for area, it is commow and convénient to refer to

Y

the volume of-a cybe (or parallelepiped or sphere or pyramid or
]

“such) tristead”of saying cubical‘region or spherikal reglon, for

9

,example.  Thug, when we say the vqlume of a cube we really'mean

. We have properties for volume analogous to those we have

mentroned for area. . -

Property IV-A. Given a’closederegion‘in space. There exist’

.closed*regio\ns congruent to__i_t_:_ where appropriate; 'i.e., the clesed

4

Property V- If two c108ed regions in spacetare congruent to

each other, ,then they have equal volumes. e N .- .

~

[



The‘Volume gf_a Rectangular Parallelepiped Region. The con-

siderations here are like those of the’ preceding section with a
cubical region of side 1 as our unit of volume. '
*A rectangular parallelepiped can be described by the lengths'

of three of its edges (no two of these thrge being parallel). We

. . ‘ 3
6.30 . : B S

Property.VI-A., Suppose a closed regiOn in,space is_the N7
union 2£ non-overlapping closed regions. Then its volume is the
sum of the volumes é{ the ngn-overlapping closed regions of which
it 1is Ehe union. ¢ ’

Property VII-A. With respect to a closed rectangular space
region as a unit, any other closed spacé-region Qg{ the EQEEZIEZ
.are considering) has a unique volume. - ) ' *

write (a by b by ¢). If each of a, b and ¢ 1s a whole number then -

by use of "building blocks" it is easy to see that the volume 18
Ia e b« c or is h - B where we interpret a as the height h and B

as the area of the base with b and ¢ as the 1engths of edges of

AT

.the. base.

™

¥ +—-
i

|

i

I

]

-

Clearly there are, -in the figure, 8 unit tGOcks in each of three

levels (tiers) and thus the volume is 3. 8or 3 « 4 J2,

‘.
-

o
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Theﬁformula V=a-+b-, ¢ is what 1s usually used for com-

6.31

puting the volume of a’rectangulay paralleliepiped. The-formula

V=h -+ B is what is generalized to formulas for volumes of prisms,
cylinders and the like.

We now give a general proof of the formulé V=a-+b. é;

We are given two ectangular paréllelepiped regioris'R1 ‘and R

We wish to express the volume of R2 in terms of the volume of R

5
el

B L T

4

s

s

-

two sides of the other and that R; has its other
4 . .0

side equal to 1.

)

2R Ny A4

RN

e i R —— I SN AT

- Ry 487 {a by b by 1)
) R2 18 (2 by b by ¢)

[y

e
t-
Bo)

.

&

‘

Case I. Suppose Bl and R2 have two sides of each equal to.

AN

v

o 2 et A T

1°

20

.

%
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- From Properties V-A and VI-A it follows that a region RA( .1) 'f

of'éides (a by b by .1) has Volume equal to == 0 (Volume Rl)’ a S
s region R ( O1) of sides (a by b by .01), has volume eQual to I

100(Vqume Rl) and so on., Hence in regarding R, as the union of

copies of R1 (starting from the left hand face) and then copies

i

I

of.Rl(.l), and sqQ on,” we have that

<

~ v

(Volume R2) (Volume Rl)

.
vt -

for the process is equivalent to that of laying off the unit

-
h

segment Jn measuring PQ.

Case II. Suppose Ry is (1 by 1 by 1) whereas R2 is
™4 (a by b by c).
;,’:. / - ‘4
o ; . . k5 N
.‘gi . LI . /
™ y L
. R
) ~ /C c 2 =
R , R R q , /C
"R A "3 1| 4 ‘
o VA : b . b
“We nOquse two intermediate regions R3 and Ru_wth R3 being, ,
(1 by 1 by c) and Ry being (1 by b by c) ) ¢ .
From Case I considering R, and Ry, - ‘ .
> 3 . ’J'-g ‘ D]

Volume Ry = a - (Volume Ry),

Py




considering Ry and R,

. Volume Ry = b ¢ (Volume Ra),

4nd’considering Ry and Ry P

Volume Ry = ¢ * (Volume R;)

Volumé Ry 5 2 + (b + (Volume Ry))..
a « b « (Volume Rs)

a-+bec - (Volume R,)

=a'b"c

)

if we agree "c,o use Rl as having unit volume,

Exercises 6-5

.

Explain the distinction between a "pegion in the plane" and a

region in space' e ! - o »
' 3
Explain why 1t would not be convenient to use a spherical

. closed region; 'i.e., the surfa,ce,-oi' a ball and 1ts intefior,

as thé unit of, volume. (Refer 'to. Section U4.)
Suppose a; b, and ¢ are not whole numbers. Explain in your '

own words, why the volume of an (a by b by ¢) rectangular B ey

L4

parallelepiped region must .be a . b *.Le




-information. We usually have three objectives in mind:

Chapter 7

Accuracy and Pr§5ision”

o

«

1. The Significance of Numbers.

When we make a statement we try to convey some sort of

7 /
(1) to make a statement of some sighificance, ) i%/’
" (2) to Tmake a statement which is valid, and
® (3) to make a statement which is. not confusing; specifically,

to-make one which does not contain uselessly detailed or irrelevant

/
) /

information. . . ! / .

°Unfortunately,‘it is frequently necessary to-compronise . * i%‘
between these various considerations. ' This is even true aboutggh
statements involving numbers used to describe "counts" or

'“measurements" in practical situations. Furthermore, in making
: statements about counts or measurements we use many tacit under-
«

standings--some quite subtle- -about what the numbers we are using

mean., Many of these tacit understandings involve ba ic simple
common sense. In this chapter Ne discuss common sense interpre-
tations of the accuracy or precision of numbers as used both in «
counting and in measurement. The roie of cemuon.sense'in under-

standing the‘use,and significance of numbers in counting and

s

D & ¥

H . 24,
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I

mea surament cannot be bveremphasiged; it is impossible to lay

"

of -numbers and their significance.

Here we want to draw a clear- cut distinction between thel|

——
T Ay

principles of measurement in the abstract geometric plane as
studied in the last chapter and the application of these

PE

have done "abstrac%“‘measurement ‘to make it possible for us to

(or counts) In Chapter 6, we could assert that the area of a
geomeﬁric reetangle was equal to the product of the base. times
the height (Area = b - h). The numbers concerned weré precise.
In this chapter we can dedl only with approximations and to

emphasize this we shall use the symbol " &" to mean "is approxi-

.
-

mately equal to." - _
ments are, 1n“the nature of things, not intended to be‘“preciee"
) > 4
. . ;
or "accurate®. In many instances, they cannot be, if they are

also golng to be valid. _While there may abstractly exist a

for humans to know what such count is. Consider questions .

16301v1ng .
’ | < .
‘(a) the human population of the world (at this instant),

y

understapd basic concepts. In this chapter we;restrict qur§e1ves

_down consistent, useful, haTd~anp-fas€ rules regarding the mdaning

s

principles to measurements in the everyday world. In Chapter 6 we
!

to statements and computations dealing“with practical measurements

Most statements involving either counting numbers or measure-

-precise count of a set of objects there may be no practicable way~”
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(b) the number of dollar bills in circulation, or .
(e) *the number of grains qf sand en Waikiki beach. /

Clearly we cannot give completely precise and valid answers to
such questions, Furthermore, attempts to give completely precise

answers would not only be incorrect but would also cause conquion

t

and probably would lead to unnecessary and irrelevant arguments.

In the case of measurements we have an extra complicating

.

factor.” Practically, there is no "exact" measurement. Consider,

.

for example, the length of a table, the area of.a rug, the
distarice to the moon. The "objects" to be 'measured" aze uneven

and must‘be. Even the standard "meter" in the Bureau of Standards

- 1

is accurate only to a few decimal places. So Me recognize that .
any numerical measurement given must be in the nature of things,

an"approximation"”

,

In spite of such limitations of applications of our number

system to problems of both counting and measurement, we stili%are

-

1edvto understand a great deal about the physical world by our

€

study of the "abstract" number system and "abstract” geoFetry'

—
.and their uses in everyday 1life.

5
-

o With considerations like the foregoing in- mind ‘we ca better
understand ,our use of.numbers in both counting and measure ent. _

. We rn our attention specificaidy to measurements with the g
observation that our remarks restricted to whole numbers apply

g .
also to "counts'. / . /T

. »
.
x . - ¢ I
- . : M

)

114 ., B

="
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” o . .

Usually when we use numbers in measurements, we use them in

\“\‘

P ione of two senses,

(a)' at least this much, or
(b) closer to this number than to any other comparable one.
Examples where measurements may well: be used withgfhe tacit

\ understanding, of "at least this much" are: ,

N ¢
,

(1) 1 pound of hamburger,
gi})ﬁ a 15' pole vault,

‘g§§§) a 6' man (in some senses) and

’ (iv) a 1000 temperature (it was a hundred today). .
Examples where measurements may well be usg@ with tpe tacit "

understanding of "€loser to this numbef than to any other :

)comphrable one" are ) i ®

. (1) a 6' table, e
(i1) a 5'10" man, o .
iiii) a 15' room, - - to

(iv) .a 98° temperature (it 1s-98° outside now).

Dépending on the cantexts in which particular measureﬁents

»

* are used, there may be differences of 0p1n10n a8 to Mthe" proper

‘ t ’

\segfe in Wwhich the number 1s meant. -

In mgny 1nstances, where numbers are used in’the "at least

'\

\
this much" sense they are used as 1solated numbers@ggd coﬁ%htations

are not made with them, If computations are going to be made--to

¢ find awerage§ or complete areas, for example--the measuréments are

4
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‘usually intended in the "closer to thigfnumber than to any other

comparable one" sense, . It JAs convenient for our purposes to agree
[ - - ¢ '

on a conYention concerning our. use of numbers; With the full

knowledge that the convention Wwe adopt is nOt universally appli-
Neabie, we agree to usi the 'bloser to this number than to a§&
. . W,

other comparable one" meaning. e < b

~

Greatest Possible Error, The greatest possible error in a gz

. -
&amount by which the given

measurement differs froml the "true" measurement of the object.

measurement refers to the largest

In this discussion we asSume proper use and reading ef/fnstruments. i

; bl
The error" comaes from the way

choose fo (must)-€xpress our

answer numerically., If we say is 8¢ long, We mean

usually that 1t is closer to n to 7‘l or 9'. In other words, :

we mean that the "true" lengt 1s between 7.5' and 8.5'. 1In this X
or 1/2 foot). The %}

' (or 1/ ¥

and the "true" length 1isg,

t n this case).

Agreement. Unless the contrarw is

possible error of a measurement given in
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Let us consider some examples.ﬁ

Numeral& -, Place value of last digit Greatest possijle - -,
- used for a purpose other error B
than locating the decimah‘ .
' point .

t . 48.6 - R .05
9800 . 100 . 50
. 054 .001 . .Q005
830.00 .01 ' 005,

Most readers probably have little question about the first

and third’ examplesg In the Second, the two zeroes are considered

used simply to locate the decimal point and hence neither is the
"last digit to be considered". In the fourth example, the second

and third zeroes are not used simply to locate the decimal point

.

v  They could be omitted Pence they are considered used to indicate

precision and the agreement gives .005 as the,greatest possible

. X
‘error. - : .

"For numbers given in fractional form, the greatest possidle

L I

« error 4s understdod to Be 1/2 of 1/n where n is the deneminator
’

of the fraction. Thus. aVAength of 6 7/8 inches is understood to

have a greatest possible error of 1/16.

- - . - Exercises 7~ ’ T

1. Give three examples (of your own) of "counts™ which tanndt be- ..

preecisely known. -

2: Gilve three examples (of your own) of measurements wsed in the v

"at Jeast this much' sense.




Give two examples of.measurements used in a sense other than
either of the senses (a) and () of the text,? (One examplé.
might+be "the 4 minute mile") "

‘Discuss the following answers to the question "What was the

population of New York City in 19507 " with respect ‘to
considerations (1), (2) and (3) at the beginning of this

~

¢hapter.
a). 7,891,957
b) 7,900,000
8, 060 000
d) 10, 000 000

\

(the census figure)

e

»

(
(
(e
(

(

e)

Give contexts in which ggz, (b), (¢), and (d) would be

greater than 1,000,000 and less than 100,000,000~

reasonable answers.

Find the greatest possible error of each of the followipg

L]

mea surements: ’ ’ o
(a) 93,000,000 miles R ’

(b) 820.1t » ' <
(¢) 16 1/4 inches l’ (:;:::::%\
‘(d) 3.460 miles - & ’ ' ,
(e) 71'yardé ’

E;

28 462 1nches wide." STy

-
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Explain how our convention on the greatést possible error of a

measurement helps statements about numbers achieve some of the

objectives 1isted at the beginning of this chapter.
. , |
Explain how 125,000 might be considered as having a greater

possible error than 120,000, ~As‘a population of a city it~

1
>
! \

probably would be so considered. Hint: 25 is 1/4 of 100.

2. Precision, Tolerancé, Si ficant Digits, and Relative

Ay P ' -

Errﬁr. ;

In the previous section, we- hav@ explained what we mean by
the greatest poesible error of a measurement. The prEcision of a
measurement in decimal form is the place valug “of the‘digit we .
used in getting the greatest possible error. In other words, the

.

precision is simply twice-the greatest possible error. This

"5 technical méaning of the word precision.agrees in principle with

the everyday usage of the word. We might speak of a measurement
which is precise (or accurate) to the.nearest tenth of an‘ineh,
for example. (Imnter we shall give a technical mean}ng of the word
" maccurate “,}) We speak of a measurement 5@ §.24" as more p'recise
.than;gne of 63.9". If we were to ask, "Ho& precisely dquou wang
this.measured?" we might expect an answer like "To the nearest

tenth oftan inch" or "to the nearest 1/4 of an inch*.

There are many instances in which our agreement of the

//' previous section on the greatest possible error is not suitable or
N

How -

convenient to describe the actual greatest possible error of a
> . :

-

™~

A

et &‘L‘W\;‘- a.\x&




particular measurement. In such instances Qe/mgr'indica e the
‘greatest possible error by stating it explicitly Thus we might
write 84.3" £,02"., We read the symbol " +" as "plus or minus"

and we are saying that the "true" measurement is in between :

84.3" - ,02" and 84. 3"+ .oan, therefore, between 84,28" .ande

"84.32", The..02" is sometimes_called the tolerance of the measure: '
ment. When the tolerance is important (as in machine shop work)

it is very common to give it explicitly (even when it agrees with

the convention we have established) ‘One might write 3/8"+ .001",

This indicates a measurement of 3/8 of an inch with an error of

not more than a thousandth of an 1nch.‘.we can conveniently éombine.

) fractions and decimals in this wi? and it is commonly ddne.

Another ingtance where our agreement on the greatest poss*bIe

.

error does not alwaxs adequately deal with a situation is where

Sseveral terminal zeroes are usedoin a_ numeral representing a whole:
number. Consider 180,000. Our agreement asserts that the greatest

,possih}e error is 5,000 (half of 10, 000) But we would write the
numeral exactly the same way if the greatest‘possible error were
500 50, 3, ‘or. r5 -We are saying that we can't really tell if | .
some or all of the zeroes are intended to do more than just locate

-

the decimal point. Sometimes the context of a statement tells us

.“what,is intended. We may use a bar ever or under the right—most

zero which 1 intended, to be precise\: Thus. 180,300 or 180,000 .

- has a gréatest pogsible error of 50. - . -
‘e s . ¢ . ~
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The considerations of thg‘ﬁreceding paragraph suggest anether
concept that ndturally comes up concerning numbers used in
measurements. This contept fs*that of "a signific!nt digig" in.
thé decimal form of the number. A digit in a decimal numeral is
spoken of as being a “"significant digit" if it serves a purpose

other than simply to locate (or emphasize) the decimal. point,

Some exaiples will clapify this: .

Numeral . Significant digits (in order) -
‘ 48030 \\/ 4,8,0,3
’ . 6l.20" - - e (6,1,2,0 :
o8 _ . 8 4,
0.00k29 . e T e,9 7
6.0031 . 'w,6oo3, -

‘ In 48030, the "o between the "8" and the "3" is significant,

the othex "0" is not, it :imply 1ocates the decimal point

(understood), In the numeral 61 .20, the "o is significant ‘ -

T

because it is not necessary to have it to 1ocate the decimal_)a

point. In 0.00429, all the zeroes are used simpfy to Jocate or-
emphasize the decimal point with the undefstanding that ‘the left-

‘most zero may or may not be written and if written s simply for

clarity in/fecating the decimal point and,reading the number, It

s 1]
makes the decimal point stand out. N s

.
N . . .

M- .
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We are sometimes askBd to count the numcer of sigpificant
digits in a numeral. We can be ‘given instructions to.“rbund off"
numbers (i.e:, numerals)‘in cne of two ways; fcr‘instance,

(1) Round off a numeral to the nearest tenth, or

(2) - Round off a numeral to three significant digits,

Consjder 58.108. With respect to either of the instructic;s "
above tne "réunaed off answer" is "58.1". . Rounding off the same

,‘numeral to, four sig;ni:{‘icant :iigits would yield “58.ll". In the
rounding off process we st§§% from the right. and move left. Thete
may be _ambiguity if the right-most non-Zero significant digit 1is a .

tl&é. Then we”are at liberty to round off eithfr to the lower or

. -

'higher figure in the digit to the left of such five. We always

R3

ought to use adl the information available in rounding off.. For

D -

example, Spnsider 437.496. ¥ Rounding off to 4 significant digits
> ylelds 437.5. ;oupding off 0_3 significant digits .yields 437,
for the value of .496 18 less.than ".5". $. .

«

Relative Error. The. concept of* relative error is the

concept of the relationship (Specifically,”the ratio) of the
greatest possible error (sometimes called the absolute error) to
the size of the number itself. Specifically, relative error is
greatest possible error . The relative error is sometimes . .
measured value ° . ~ ) i
technically called the accuracy of the measurementi The moye

accurate the measurement the .smaller the relative error. Let us

-
S
e -

ALl



consider two examples. ) .
S IR 937000,000 miles’ , . .03". £ .001"
relative error = 93,880?820 relative error = %'
= - - .
B .005 ’ . N 3%
- ' 8" .03
We can see that wh}le the measurement on the right is far
more "p;ecise“ (.001" to Soojodb miles) it 1§'about 6 timeé less
accurate (.03 to .605) than the other measurement. ‘ v
- The distinction between :tréatest'po;sfble error™ and -
‘relative error"” is an important one. The.one we want to use
. depends on the coﬁtext. ) ’ ’
N ;;Exercisa 7-2 N
,}. Assume our agreement on gqfatest possible error, Exp}ain the
stateﬁent, "“The more éignificant digits there are in a numeral
N\‘j the less the reiﬁkqu eﬁrog." Use exg@g}es in your explana-

@ 70 12' . @

tion if you wish:_

-

2. State which of the following two measurements is more precise;

is more accurate. &

-

I

(a) 68.3% arid T 12.34 - .
82.01° and 0.014°

-3

b

ko

)
. (¢) 16,000,000 light years and 1760 yards
(d)

»

18 £ .3 and .84 .02,

<"‘\
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3. How many significant digits'are there in €ach of thé following
numerals?
(a) 14 Y082 " (d) 19,414,500
. (p) 9.600 N (e) 16,000 -
“(e) 0.0316 | (£) 0.0002k4
Round off to 3 significant digits
(a) 4.86496
(v) 13.021
(e) 77,455,000
(d) .0152897
What would be meant by the per cent of error in a measu;ement?
How would it be related éo the relative error?
) Exblain a situation nhere you would be interested in the
relative error of a\keasurement.
Explain a situation where you would be interested in the

«

greatest possible error of a measurement.

3. Precision and Accuracy in Computations Involving Addition.

:ft"/\ We may frequently use measurements in various computations

Each number we use hasza certain precision and a certain accuracy.

We ask how precise or accurate the sum (or the produex) of such

4

o \
numbers will be. The situation getgﬁvery complicated very -rapidly.

The bes% we can do here is to give some*examples and suggest some

reasonable’ "rules of thumb". Some understanding both of the

nature of the problem and the limitations of our "rules" is

i

‘necessary. . .
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Suppose we want to add two numbers like 18.6 and 23:9. The
greatest possible error is .05 in both cases. Below We/have made

some computations revealing the greatest pbssible error of the

4 -

, sum. ’ : * .
i Least values : Greatest values '
18.55 18.6 © 18.65
23.85 23.9 23.95
. 42,30 §2.5 42.60

s+ Thus the sum 42.5 really has a greatest possible error of 0.1;

i.e., we know only that the "true" value 18 somewhere between

18.6.« + .05
23.9 +° .05 :
42.5 + .10

> In effect, Qe add’the greatest possible érrors of the addends to
find fhe greatest possible error of the sum.

ca T “ ... If ‘We had three numbers 18.6, 23.9 and 41.2 to add together,

then the greatest possiple error of ‘the -suit” would be 0.15. The

more numbers we add together the less precise the answer can be

3 s . .o . P . l

state explicitly the greatest possible error of the sum. éo as
in the first 11lustration above, we would write our answer as
42.5 with the standard agreqment that the 'greatest possible
grror" 1s .05 but with the clear understanding that: we gannot be
acertain about this much precision. 1In a sense we are'"caughtm;.
we have to compromise between technical validit& of our state-

.

ments and gixing too many details.

42,4 and 42.6. We could have written our computations as follows:

asserted to be. However,.it is impractical and inconvenient to ‘4

¥




@e» ' ' If w@g have several measurements to add‘together,'thenkthe

PR B

"law of averages" makes it unlikely that we will get the largest -

possible inaccuracy in each number in the same direction. In

fact, we expect the "deviations" of the "true" measarements from -
the measurements we use to compensate for each other in part.

»Thus our use of the answer we get by ordinary straightforward

qaiculation is really the best we can do and is 11kely‘to be
féirly close to the "true' value. t

Suppose we want to add 86 to 18.48. Here it simply does got:
make sense to write the answér as 104.48 for in so doing we are ‘:

implying precision to ‘the nearest .01 whefeas the 86 presumably

-

was precise only to the nearest unit. Thus we ought to write our
answef as 104 or possibly as 104.5 with the .5 interpreted more as

1/2 than as 5/10. The "true" value is quite likely to be some-

[y

where between 104 and 105 and thus 104.5 seems like a reasonable

. B o - ‘ -

answer. -~ . . -
4}

2

" In bank statements and other financial accounts, a figure

like $86 frequently means $86.00 and thus it is reasonable to

add to the last cent if desired. ‘ ' i

\‘D The qﬁestion of accuracy in addition of measuremenfs 18 even

N
more complicated than that of precision. The sum is customarily
. v . /

.more accurate than one of the addends and less accurate than the -

other. Consider the illustration: : .

5
o
K * -




4 104 ‘
’ S +25 .
' 129, '
‘ . ° \
1.0 n ‘
. -1—.5—9— ~ .01

This indicates that the accuracy of the sum is about .01
+ which 1is between the computed accuracies of 25 and:lou.
- In subtraction problems, the accuracy of the difference
may,ge‘farmless‘Ehanwmhe;acdhfacy Qf. the “bther numbers ﬁsed.‘
‘(In other words,‘the relative error of the difference may be fa¥

greatler than the other relative errors.) Consider the example .

2

)

below:
v 62 " ]
- 8 ’ 2 ~ 001 .
! M ‘; & IS
, ' é & .01,
1.0 ,
N —E: & .25

Here the relative error is large because the difference . -

(under subtraction) is a small number. T

~ ¥
’ ] ¢

’ Exeﬂfises_7-3 “\
1. 'Find the greatest possible error of the sum of

)

a

(a) 180, 160, 140, and 80.
)
(b) 16.8 +.001 and 12.5 * .002. ' ’
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2. Work out the~agtu#g greatest possible er}or in (86 + 18.48)
as in the text. iﬁint: write 86 as 86 + .5 and 18.48 as |
18.48 * .005.) - $ |

3. G;ve an 1llust tiéﬁ ekplaining the greatest possible error
in a subtrgction problem. Are the considerations 1like éhose
.for addition? \ ‘

‘4, Find the felative error of the éum §f
(a) .023, .060, and .055. '

(b) .28 + .01 and .42 + .02,

5. Find the relative error of the difference of
(a) .34 and .24.

(b) 160 * .1 and 100 + .1.

y

4, Precision and Accurééy 1Q_Computatlons Involving .

. 77 . . !
Multiplication. ‘ < \ .

+

The situa?ions relative to the greatest poss}ble error-and
the relative error in multiplication {and division) ére'eveﬁ less
satisfactory than those in addition and subtraction. It might be .
observed that-the subject of "error theory" is éhe which is being

4

studied by mathématicians at the present time. The wide-scale ,

use of computing WMachines makes "error theory" of great importance
L, . s ’
today. ’ ; ‘ ‘ X

If we multiply two measurements Eogether, what can we say ” .

(RN

about the pfgpision of the product? For instance, how many square

b4




feet are there in a room whiéh is 16 ft. by 18 ££.7 Most of us
would’ say "288 sq. f£t." but how precise ig our answer? We assume .
* (by our agreement) that 1§§anq&&8hare precise to ‘the nearest unit.

Consider the compuﬁhggpns below. .

) Least values ¥ . Greatest values
, 2 i7.5 1&63 ' 1&63.5 : ‘
' lic_.)_ : 1 1 ’é N
. © 4271.25 288 305.25

In other words the "true" afea:can differ from 288 by as much as
about 17 units. Béing explicit, the best we could say is

1
288 + 17.25 Y.

Ll

where actually '16.75 is the correct greatest poséible)error in the
negative direction. The size of the greatest possible error has

. ) N
been massively magnified in the process of multiplication. We can

see this geometricaflx by considering the flgure below.

/
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The 2 by 3 region is enclosed by the heavy segments. The 1 1/2 by

[y

2 1/2 possibility is indicated on the inside and the.2 1/2 by
3 1/2 on the outside. AN ot

Going back to the 288 # 17. 2% eese discussed above one -
", might QEll ask, "How ShOuld the answer be written if we don't wish
to indicate\the greatest possible error explicitly?" There is no
clear-cut answer. Some would prefer 288 but clearly this implies
much greater précision than is present. Seme would preier 2?0.
Here the "true" value would be indicated as being between 285 and

s s

295 which, while not necessarily correct, seems not unreasonable.
The figure 300 is far too imprecise for most purposes. .On the
basis of the three obJectives for statements listed at tHe begin-

ning of -this chapter& it might be, ar%Ped that 290 would be the
be st answégx The usual 288 seems too liﬁ/ly to be invalid.

. However, for.most purpos S the answer of 288 is used.

At this stage we/can draw a distinction between what might be
gelled "numerical fidelity" in arithmetic and preciseness of
métlh\a.tical statepénts. When children multiply 8 by 7 they

. .should get 56 every time.;'Any/anéwe% other{than 56 1is simplx>‘ ‘
wrong. '"Numerical fidelity" is important in arithmetic. But an

-~

" -+ _ answer of 56 sq. ft. for the area of a room 8 ft. %y 7 £t. is
-/ "

' to E?e
can do. The answer 56 sq ft. is misleading in its implication of *’
- ¥

-
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precision but other possiﬁfe answers have their defécts too., If
* R <

is important to understand the limitations of our language and._.

v aeyr - e - > R 5
? 3

conventions,

¢

* We return to some examples involving computatioqs. Let us
ask how precise linear measurements should be fn order for Qhe
product of fhe linear measureﬁentsitb be precise to the nearesg |
unit. Consider an example. R ) |

We want 10 x 20 = 200 to be precise to the nearest unit. i
Iet t Dbe the‘greatest possibli error for each of 16 and 20.} Tﬁeﬁ

we have A ‘
. " . Least values Greatest valueg -
20 - t . 204t
-10°- £ . . 10 + ¢
' 200 - 30t +t2 - 200 + 30t 4+ t2

Now if t 4is small then t2 is much smaller. So let us ,

. consider only'30t. Then 30t should be less than .5.° In other.

r > ”»
words, . .
' ) 1 . -
= oy .016.
30t < 5 or t < & or t < .016 \ |
This we see thdt in this case if % < .016 then the greatest =Y
pbssiJle error of the product is about .5, Our méasurements 10

and 20 have .to be very precise for the.product to be reasonably

precise. " v \
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Q}naliy, let us make some obéervétions about .the relative

°érpor of a product. Hene, in our example, things do better.
P _7_8.85_,‘,“

2
16

2 :
18 ) N . . ~

We add the relative errors to get the relative error of the .

product. ILet us Justify this. Let N and N2 be the numbers to

mulﬁiﬁlied together. Let tl and t, b r respective

greatest possible errors. Thus ‘ N

B |

-

, and
) 1

3

“are the original relative errors. Now

)+ %

o

(eN_ls.F?l-)w'.: (Np+ty) =Ny o Nyw (b Nysutye M)

(N, “-tl) . (N2 ,-t2) =N, . N, -(1:l N, +t, . N1)+ t,t, .

If ty and tp, are small, then tj-tp 1is very small and we

ignore it (t, .t, was the .25 of our example). Hence

tl -Nz:!-t2 le is.(approximately) the greatest possible error
N ‘ s
in the product. . Hence

‘relative error




- = the relative error

%

®
r—azl (=
+
3

’

2 VA

and the right hand side is the sum of the relative errors of the

two factors. \\\ . ‘ ' '

1‘

q: '20

(a) greatest possible error of .1.

Exercises 7-4 ~ -

* 14

Find the greatest possible error and the relative error of the

Yo
product of

" (a) 12'and 25. . S T o

(b) .8+ .01 and .6 + .02.
Pind (apﬁroximately) the greatest. possible erroi/jy the

’

factors 8 and 12 if the product is to-.have a

/‘ K

(b)), relative error of .l.

-

(Assume the two factors have the same greatest possible error ¥

3; ,A house 1s advertised as 30‘ft, by 36 ft: but each measurement

1s'really almost’ 6 inches shorter than the figure given., The,

t

buyer thought he was getting 1080 square feetgqof houpé. How

-

much was he actually getting? "
- ¢ ' i ” . , ¢ / ‘

. . - .




7.23

~ - e

What is the greatest pogsible error in the volume of a box
given as 6" by 8" by 8" ' o

Find the approximate greatest possible error and relative -~

error of the quot;ie\r/lﬂt;/of 35 divided by T.

[ -
“
.
; s
.
.,
/ /
.
- 7 .
3
- -
.
~
.
Ld N
N 2
>
-
e~
S
t .
4 " -
o~ R
PR, 2
M - -
-3 <
’
- r

t'»‘ 134 ~ c'
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Chapter 8 . -,

. ‘
: Congruence

2

1. . Informal Constructions.

In Chdpter 6 we have stated some basic properties about the

exlistence of segments congruent to a given ségment and of angles,

congruent to a given angle. In this section we discuss the .

geométric constfhctién of suph segments and angles and later of
, N
triangles. For these constructions, we assuie we have available

v

- an unmarked ruler (a straight-edge) and a compass. These were

“the cldssical Mtools" of the Greek geometers, If we.wanted to

make drawings 6& skepches as distinct from‘geometric,constructiong

we could draw figures free-hand or use marké& rulers and pro-

tractors., Here we limit ourselveé to the classical Mtools",
Segments.‘ Given a ségment 2B and a ray f? How do we find

a point 2 on X¢ such that AB % ¥Z? .

We can adjust the compass so tﬁat with the point at A -the pencll
tip will fall on B. Then with this setting we can put‘%he point

at X and mark an arc of a circle which crosses X¢. Call the

¢ .




J

~ -~

point of intersection Z. Then AB 2 XZ. (We could also mark the

I
straight edge--or note a marking on it--and use the marked straight’

edge to find the point Z.)S_Usua!ﬂy in geometry we prefer td use

the compass fo?/this construction whereas in measuring lendgths

>
in the everyday world we use the marked straight edge method.
Angles. Given an angle /ABC, a ray X¥ and a point D not on .
. —_——_" oo v
the line f¥. How do we find a point W on the D-side of f? such

. that /ABC-= /WXY?

-

" We know such a point exists (from Property -£-A of Chapter 6),
The questiol is how do we use a ruler or coﬁpags (or goth) to
£ind it?  With the compass point at B mark off an arc of a circle

intersecting rays BA and BC. Call the points P and Q respectively.

Mark off an arc of a circle as indicated with center at X, and
with radius edual to BQ (or BP).

Now set the emmpiss to measure the length of PG (the segment
S
PQJg!és not need to be drawn).

point of the compass at 2 draw an arc in%ersepting the arc¢ with

hl
Ay
- ﬁ:
b )

i

With this setting and with the

&

’
S
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’ :zfjgr at X which has already been drawn. Finally if we call

ch a point of intersection W thenithe angle /WXZ = /ABC. At
~least, 1t looks as if /WXZ should be congruent to /ABC. 1In

Section 2 of this chapter &é pin down the assumptions that let us

@

assert such to he true.

2

Congruence of Triangles. (Informal). In traditional .

geometry, some of the principal theorems deal with congruence of

triangles. We begin our study with some intuitive ochgervations.

Suppose we have givenA ABC. How can we construct a triangle
L.

congruent to AABC by use of a ruler and compass? —

—

e ‘We lay ofETon the line 53 a segment ITEf which 13 congruent
- ﬁ%o’ﬁﬁ. (Wg put the point of the compass at any polnt A! ;nd mark
_anjarc. of a circlg crossing fa at a point we call Bt.) With At
as cénter we draw a circle {or an.arc of a circle) with radius
equal to the length of BG. With BY as center we draw a cfrclg 1

(or an arc of A circle) with radius equal to the lenéth of BC..

The two circles we are considering intersect in two points. Call

&
;t’ﬂ. L3
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these points C' and C" They will be on opposite sides of the
line 5Q. Then AABC ¥ AA'B'C'.and\also AABC ¥ AMBrer, If
we were to try to superimpose AABC én' AA'B!C!, for instance,
everything woéuld fit. ‘ ] o
We could begin this way. Lay AB on A'B! with ll'ﬁ or;vATr (and
s, hence B on B!'). Then C would have to fall on tHe circle with
center at A' and radius the length of AC. Also C- would\have to
fall on the circle with center at’ B! and radius equadl to the length
of BC. Therefore C would’have to- fall on the poir§t (0} (or: the
point C'!') as these are the only two points on both circles. Now
we could require that C fall on thé C! side of £3 ana thus C must
'fall on C!'. Therefore our congruence seems 1':0 be es]:éblished.

Similarly AABC = AA'B'C!!'., Thus using a ruler and compass we.
" &
have seen how to construct a copy of a triangle.
Let us conosider a similar problem. Suppose We are given

three segments as follows.

A B
¢ D
E F - N

____Construct a triangle whose sides are congruent to AB, TD and EF.’

. ’fhe construction wo;ild go through like the one above. We would

»

138 B
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lay off ATBT with AB = A'B!', We would construct a circle with ' .
center at A! and with radius the length of TD. We, would construct
+ & circle with center at Bt and with radius the length of EF. Then
1f the two cincleswintersect in two points, say X! and Y!, either
Xt or ! Tay be taken as the third vertex of the desired triangle.
It 1s interesting to note what would happen if AB = CD  EF
[or in the other notation if m(AB) = m(CD) + m(EF)]. In this
eese the two circles would 1ntersect in Just one point (the point
of tangency) and that point would be on A'B', Hence no triangle
‘eould be formed. ‘
* Finally 1f AB > (CD + EF) then the intersection of the two
;" circles would be the empty set and again no triangle could be
formed. In Chapter 9 we shall note such a relationship again, .
the so-called triangle inequality. In eny triangle, the length

of any side is less than the sum of thefiengths of the other two.

R 14
. "

Exercises 851H

»
1. Given segments AB and CTD below. Draw a ray. Label it PQ.
With a compass find points X.and Y of ?6 such that' PX = AB
. e

and ¥ ~ TD. :
.A - B .
c D
‘ , 8
/‘
- o [
139 ’
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Given angle ZPQB below. Draw a ray ﬁ and a point Z not on ﬁ
Construct an angle /WXY sucH that W is on the Z-side of X¥ and
/PQR = /WXY. ‘

e :
(a) Suppose we have given two segments and one angle,

K P
A B

R . R
Constrtict a triingle with two sides congruent to EB and -
and CD and Q%th the angle included between these sides
congruent to /PQR. . . - ‘ .

(b) Once the angle and two sides (with the angle between

them) are kvwn 1s the triangle completely determined?

(e} Can anybody give ‘two segments and an angle for which

this construction is impossible? Explain.

(a) Suppose'we have given two angles and one segment

Construct a triangle with a side congruent to DE and the ° .

two angles adjacent to such side congruent to /ABC and -

/PQR. ) . : EER
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' (b) * Once the two-angléé’and the ‘side ﬁétween them are known

“1s the triangle completely determined?

(c) Can(énybody give two angles and a séegment for which this
- construction 1s impossible? Explain.

5. . (a)° Suppose we have given two segments and one angle

A . B
i c D

éonstruct a triangle with two sides cbngruent to.AB and

TD and with an angle not iqcluded_between them cdngruent

to /PGR. Require this angle to be adjacent to the side

congruent to AB.. .

; (b) The same as (a) except require this angle to be adjacent
to thé side congruent to TB. Is the construction
possible?

(e) 1If Kﬁ were enough longer could the construction of (b)i
be done in two diféerent ways? B

(d) Can anybody give two segments and an aqgie for which

neither the construction of (a) nor that of (b) is

possible? ' '

.

N [N
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2. The Meaning of Congruence,

In this section, we try to glve a more explicit definition o{ﬁa‘_na
congritence and to show the relationship of‘this definition €o \
previous fGnderstandings. We have sald thatyﬁyo sets of points are
congruent if they have the !same size and shape".‘ In traditional

' terminology,‘this is interﬁ%eted as meaning "if either figure (set

~ of points) can be superimposed on the other". But as we have

remarked in Chaptér 6, the process of Superposition gets us in-
‘volsed with considerations'of "moving objects around", and,.from

some points of view, the motion involved is irrelevant to the idea

adh

e

of congruence. Also' while we shall be primarily concerned with,
congruence between sets of points in a plane, the definition we
use is aoplicable to sets of points(in space,” The 1dea of‘ super-
"imposing one billierd oall on another doesnt't make much sense.
Yet billiard balls are "congruent". The aefinition we give |
should'help pin-boint'the basic idea of congruence and emphasize

i

its. applicability to various types of figures. . Lo i?
4

]

‘ If we l\ok at 1t in a certaln way, the idea of superimposing
one figure on another leads us directly to our definition of

congruence. iy . !
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Suppose A PRQ_can.be superimposed on A ABC with R falling on

B, P on‘A a;ld Q on C. Then there exists a 1-1 correspondgnce ‘
bet(:ween APRQ'aqd AABC, each point.of APRQ corresponding to thait
point of AABC which 1t "covers" iwhen APQR 1is ﬁupérimposgd on '
-AABC. For example, the point X would ;:orr;aspond to thé‘point Xt
under this correspondence. But;f{it is not e;xough simply‘ to say
\that there exists a 1-1 correspondence betwéen ‘APRQ and A ABC.
Something else is also involved in the notlon of congruence.

Distances must be preserved. Suppose APRQ 1s superimposed on

AABC as indicated
Pe——A
Re—>B"

Q<—>C

I:A*-«fs..":{‘
wy

then for am g gwo points of APRQ, the distance between therﬁ, {.e.,

fthe segment Joining them) must be the same as the

"\iv-‘;“*

;‘é& Bgé'%&m:tween the two points-.of A ABCY 1ch they cover, 1. e.,
get eﬁ thi?wo points of AABC which they correspond to under the,u o
1-1 coi(‘res ondence. As examples, the disthnce between R and x +

‘must be the same as the distance between B and X! (in other words,

RX = BX!),the distance between Q and P must be the same as that
between C and A (QP = CA), and the distance bé"'c@n Q and X must
be the same as that between C and X! (QX = CX!')%

3

.These conslderations leq.d us how to our definition:

Y

Definition: Two sets of points &'re‘ sald to p_é_ congruent pro-

vided that there is a one-tb-one correspondence between them *

which preserves distance. 1 N

a
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K angles.

N

~which preserves distance must exist,

Al ' -
K\\ . ' -
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’,

With this definition in mind let us go back to considerations

of congruence between two segments ‘and congruence between two

~A X 'S B

Saying that KB 1s congruent to PQ means that there is a one-

-to-one correspondence between AB and FQ (as sets of points) and

distance is-'preserved under this corresponFence. If we think

about laying off PQ on the ray KB as suggested by the drawing

above then P+—=A, Q=B end for any point X of PQ there is a
corresponding point X' of AB, Furthermore, distance is preserved
For example, if X*——*-X' and Y-*———Y'&\‘Pe length of XY 18 equal
totthe lengtq of XT'YT, A statement of the existence of a s
congruence should be understood to imply the existence of a one-
to-one correspondence which preserves distance.

. It is ‘hard to check on whether®all distances between .pairs of.

o

corresponding points are preserved We want conditions which® we

can observe and which tell us that such a one-to-one correspondence

IS ® - -
. .
%

P P

It is reailylpart of our basic understanding about congruence
of segments that the foIlow@bg property holds. We understand
{A B} to mean the set consisting of the tWwo elements A and B.

\
-

I ki
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Property 'I: _\g R, S, b, and D are points ahd (R, S} = {c, D},

then RS = TD. Furthermore, there are exactly two conéruences of

* RS with TD 'which corresponds -(R, S} with {C, D}. One of these
& [ — -

corresponds R with C, the ‘other R with D,

. One thing this property says is that all segments')of a gg.;en
length are alik‘e. "Any congruence between two pairs of points
-1ndi;ces a unique congruence between the two segmenfs having these
pairs of points as endpoints. In fact, if (R, S},% {C, D} and

R+, Sf—:->D then there is a unique one-to-one correspondence’

between RS and TD which r@grves*distance and corresponds .R with
~S .

C and S with D.’

@

et v There 1s one and only one way of laying segment RS on segient

D so that R+ C and S<+—D, . .
Wernow consider the congruence of two angles.

- A
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The angles /PQR and /ABC are congruent if either cah be
s_uperixnposed on the other or, more precisely, if there exists a

one-to-one correspondence between them which preserves distance.

As, under these conditions, the vertices B and Q must correspond
to each other, then ray EK can be identified with rava—ﬁ or with ,
ray ﬁ. Ej,ther of these leads to a oongruence of the two angles.
Let us suppose ray BR 1s identified with ray 'Q-F. Then any point
X of ﬁ corresponds to a point X! of Q‘I5 and any point Y of ﬁ to
a point vt or Q_ﬁ (In the case of angles, the points A, C, P

an?t,‘bhat we used to name the angles may not correspond to each

‘ e — oy

PR _1;,\_‘\,,“-w;'
other.) . R R T MR

The implicit assumption about"the congruen;:}LABC'.with
[PQR is that distances will be preserved under the one-to- one .
correspQAence which 1is %: up. Thus in our figure BX ¥ QXT,
BY 2 0¥T, and X¥ XT¥T. The last of these'is important to °note,
The distance between any pair of points of [ABC is equal to the, '

" distance between the pair of corresponding pointsﬁ[?@ﬁ“ _I_n_ . ‘,,""
effect we assumed this to be 80 when we first gave our properties C
ot ko - ; g ®
on congruence of angles. : - o by ﬁ > n
. - ¢ ' o %;

In the case of segments, two segments were congruent if thei:r"'¢

8

‘o
two sets of endpoints were congruent., A similar type of conditior{ 9”. <

'
i
" ¢
i

is true for angles. We wish to state explicitly our basic,under- - b

standing.. . / a. S | K,
|

)

. . B ) i
o ) ]
}
1

N \ - i
- 3
k3 / oo ‘ .
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. Property II: Consider /XYZ and. /DEF such that ¥X ¥ ED,
YZ X ¥F, and XZ = TF. Then /XYZ ¥ /DEF and with X=—D, Ye—sE,

and Z-—-TF there is a unigue such congruence.

}

This property tells us that ii‘ we can find three points of
. either angle in the correct relationship to some three points of

the other, then the angles are congrint.

o g
‘I‘his propérty gives us a criterion for stating that two

angles are cong\ruent It is precisely this type of condition

that we needed i\.\r\x’"Section 1 of this chapter to assert that our

‘ tonstruction actu\?lly gave an angle congruent te the given one.
Property II iETreally rather intuitive: We ivoulfl- expeet

/DEF to coincide with /XYZ if we superimposed the figu/re& ith

FonZ, Don X and E on Y. ‘ L

- -
e -

L Exercises 8-2 ° "
1. 7B and T§ are given below as having'the samé length.
y . s 4
A B . .,/
— - g ’ ) Cl .
Describe two congruences of AB and PqQ, 1.e., describe two
.-
one-to-one correspondences between AB and PQ which preserve
[ ,. 7 :
distance, )




- L

2 In (1) above suppose X 1s a point of AB at %- of the distance

. .. - .from A to B. Draw a copy of ¥§ and label as Y and Y'_}x‘ﬁ
points t8 whiéh X would oorng:.;gond under the two congruences

. of (l). ' ' 8 ’ L RN

3. Assume that’ the angles [UVW and /HJK below are congruent.

Assume VU = VT 2/HT X JK and V8 T W & TW = TN.
(a) “Describe two congruences of /JUW with /HIK by r;latching

-

~

. ®
the five indicated points of one figure with the five

_ : the other in two different ways. .
(b) In one of your congruences of (a) U nd W e—N.

. - 4 \s
What do we know about TUW and HN? About TW and MN?
N . \

4k, Consider the ffgures belows > - W "

[

. .- .
E&l‘ain how by measuring three segments of each figure we
. - o

~™\'  might prove that /EFG 1s congruent to /XYZ (if it is).
B ) /-
\ v7' ( -
\\ It
’ .. ~
. léﬁ ‘lﬁ VN ? '~ yi
ks i . \
" =
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5. .Consider the angles below. vt
//~ Y

" Suppose BB = QP and BC X, QR.
If AC is not congruent to PR, can /ABC be congruent to /PQR?
Explain. V/fa - . h

6. Try to state Property II more simply.

4 f) -
S e 3. Congruence of Triangles. -

_ What is usually meant by saying that AABC ¥ ARPQ? In

’

.

traditional termfnology one says that A ABC can be superimposed /)

on ARPQ. In many geometry texts this is also taken to meén that

. Megrresponding sides are equal and corresponding

angdgs are equal'. ‘

- A

/ Of course, in our terminology the sides and angles are sets.

of poin{s and, hence the word "equal" would be replaced by

S i
+

"coﬁgruéh ", Note that both of the above meanings for congruence

of triangles involve a matchiné process or correspondence.

.

- ) / ‘

]
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Certainly the superpositioﬁ requires a one-to-one correspon&ence
between the two sets, each ﬁbint of.the oﬁe set cqrresponding to
the point of the ofﬁer'on which it is superimposed. If AB corre-
sponds to RP and BC corresponds to PQ then clearly B = 'K'Eﬂﬁ(')' .

should correspond to P = RPNTFQ. Thus the idea of "corresponding .

-

sldes" and "corresponding angles" requires that the set of

. +
vertices 6f the one triangle be in a particular one-to-one

correspondence with the set of vertices of the other. In fact,

the converse 1s also true; a particular one-to-one correspondence

by -
el

of khe two sets of vertices induces (or prodpces) a one-~to-one

correspondence bgﬁween the sets of sides of the two triangles and

a similar correspondence’between the sets of angles gf the two

triangles. For instance, if A=—R and B——eP then AB-—TFP.
Thus we see that a key to the possible congruence of tﬁgﬁxq

triangles is a matching of their sets of vertices.. In fact,

we have the following almest obvious theorém which we give 1

without proof.. .

-

Theorem I: If AABC = APQR, then any one-Egv-one‘ corre-

spondence 2£ the triangles,which preserves distance gives a one-

to-one distance-presgrving correspondence of the sets of vertices
- = v - -

of the two triangles (of (A, B, C) with (P, Q, R}).

I

To make our notgt on and 1anguag§ easler, let us agree
that writing
AABC = AXYZ
means.nbt only tQat thgtgrlangles are congruent under some

matching brocgss but that tﬁey are congruent under a one-to-one

-

L)




"“—the distances that must be preserved.
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correspondence which matches tl;;e vertices in the orderﬂgiven. In
LM .
other words, if we write AABC = A XYZ then we imply.that

B ' Y N

A

X - —N7,

’

A«—eX, B- Y, and C<«—=Z under the congruence we have in mind.
Similarly, let us agree that {A, B, C} = (P, Q, R} 1mp11es that
A<«—>P, B<+—nQ, and C-<—R under the congrugﬁce implied
between the twg sets of three points each. i
The converse of Theorem I, which we shall state as'Tﬁeorem II,
is also true butyit requires some proof which‘we‘shali outline.
(We assume in Theorem II that {A, B, C} and {P, Q, R} are sets of
vertices of triangles.) ‘
Theorem II: If (A, B, C} X (9, P, R}, then AABC ¥ AQPR.
Proof: We begin by recalling ﬂhat.we‘mean by séying that .
(A, B, C} 2 (Q, P, R}). A set of points is congﬁpent to another

if there 1s a one-to-one correspondence which preserves disté.nc'é

between them. Therefore, as A<—sQ, B=~—P, and C=—R, we

_PR, these indi‘gg.r‘ng .

L]
-

are saying that AB = QP, AC = QR, and BC

fo—y
Ot
j Yy
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But Prdperty I of the previous sec‘t‘ion implies that there are one-

to-one correspondences which p'res‘erve distance be{:ween S~

-~

' 2B -and QF with. A=< Q and §’<—>P ‘ L
AT and QR \with A<+—= Q and C<—R
and BC and PR with B<—P and ¢ =—R .

Thus we may consider a one-to-one correspondence to have,

4

been set up bétween A’@C and AQPR and this correspondence matcles
A with Q, B with P-and ¢ with R, y <t g

What we have not.yet observed is whethér or not all distances

are preserved under the correséondence. For instance, in the
5 b .
figure below, if X =——=X! and Y<—=Y¥1, is AX = QX'? Is XY = ¥reee

.

s 7/ »
B ' P
» , 7 N X . // \\x'
s N . S NG - -
/ TN ~N ‘
AL X C el AN '
—*‘5\\ N .~\-;'?§‘;~ \
Y \‘_\C ,f “——“'J_‘ k ,“\“‘R . .

. ~ A
4 . RS

o each of these questions is ('yes" and we use

what we need to apply Property I'I From Property II then,

/ACB = /QRP with A Q, C<—=R and B=—sP and the natrural"

%
further-correspondence such as X~—X' and Y<—.——X'. <But .as J

A-—=Q, X=—=X' and Y=—=Y! then AX must be equal to QX' and o

12

XY must be equal fo X'Y!' because distance must be“preserved under
L] : t N
B

., . . \.\ o /
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-

e

congruence of the angles /ACB and /QRP, in this instance. By use @

of this type of reasdning Theorem IT. can be established on the * » .

basis of our assumed properties.
Note sthat inﬁtnis argument which we have sketched, we first .

observed that'the corresponding angles were congruent (using .

!

Property II). Then because corresponding angles were congruent
the various distances had to be preserved, . . ‘ . .
We now wish to observe. the funda.me%l .theorem that if two

triangles are congruent by our definition then +they are By the
i L4

»

° traditiona® definition. .

«Theorem 'III: If AABC X ADEF, then the corresponding sides .

and corresponding angles of the two triangles are congruegt.

o 3

~ Proof: Since A=~D and B =—E.under our congruence, thén
('\AB = DB. Therefore AB X DE.  Similarly AC ¥ TF and BC X ¥F, ana *
: \
the corresponding sides are congruent., What about [ABC and [DEF"

\ég’e they congruen't? The answer 1is yesy for

BE X ED, BC = TF and AC '
Property/&]’. [ABC /DEF under a correspo’ndence whicéh A<—sD,

0

B=<—E and P Similarl’y /BAC X [EDF and LBCA /EFD, '
A

A

-
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] v

Thus we see that in the case of triaﬁg%es our definition of con- .
. - -

gruence implies the traditional one. Lthen do we use it?

(13 It is more explidit and\}ead“ﬁ - better understanding.

vy
VA -~
R

(2) . Tt emphasizes the fundamentél)idéa of congruence and in
- so doiqg is applicable to other types of figures (séts
of points).

K

-

(3) It does not unnecessarily introduce the idea of "moving"
: NS TN
S
L

4

seté. ‘
(4) It gives another elementary geometric setting to N
’ 1llustrate the important idea of a one-to-one corre-
spondence. - Thus It help§ give a unity to the language

of mathemgtics.

Exercises 8-3

1. Suppose' AABC and AOPQR gre as in the figures below with all

éix indicated segﬁents of the same length, ‘e
v B ) .

fad
-

.
- . -

How ‘many congruences are there between A ABC and APQR?
po !

List the matching of the stts of vertices for all of them.

-
-

For example, (\<~—=P, B~—*R, C <Q)- would be one such.
. .

- .

>

>



A

2. Explain /why Theorem II is like the traditional side®side-side
congruerice theorem.
3.- Suppose in triangles .ADEF and AXY¥Z that =~
' DE ig . not congruent to XY
DF is not congruent to X7
and - EF is not congruent to'VZ.
Can ADEF be congruent to AXYZ?
Must the two triangles be congru’ent? 'Explain.

4. Suppose AHJK ¥ AUVW as below, with L—X, M+sY,

»

.

List all the pairs of segments (with some of the indicated
#£1ive points_as endpoints) which you know must be of equal

P -

" length. You should have 10.of them. o ’

[

* . 5. 3Suppose APQﬁ;"ZTEC.'\ L.

)

Explaip how we know %hat /PGR /ABC,

4,1 Congruence g_;t_‘ Triangles--The Standard Theorems.

¥
We begin with the SSS Theorem (Sidg-Sideféide).

s~ 7
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Theorem IV: Consider AABC and APQR. If BB X 74, BC © R,

d AC = PR then AABC = APQR. ‘ ( .

¢

+

Proof: This theorem is essentially a restatement of Theorem

IT.« Let A P, B Q and C=—=R. Then this correspondence

is a congruence of (A, B, C} with (P, Q, R}. Therefore Theorem.I]f
asserts that A ABC = APQE. - . ‘_ '
Next we state the S/S Theorem (Si\de-aagie-side)

Theorem V: Consider AXYZ and APQR. If XY 2 - PQ, ¥Z =

and /XYZ T /PQR, then AXYZ ¥ APGQR.

P 3
Proof' The given condition that the angles ZXYZ and ZPQ,R
‘are cOngruent means th;t;'there 1s é one- to one distance presegving )
corresp:o_rzdence betWee_r; the angles. This correspondence ca.n be J
taken so that X<—P, ¥ Q and Z=—R. But since all corre-
sponding distances must be equal, ' XZ = PR and then XZ- = PR. ,
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This together with the given congruences of segments agserts con-
ditions like those of the hypotheses of ‘Theorem IV. Therefore
AXYZ ¥ APQR. ’ ' ) .
We now cgnsider the [S[’Theorem' (angle-side-angle).

Theore I: Consider triangles APQR and OABC, _{_i_"

' LY
/POR.= /ABC,'QR = BC, and /QRP = /BCA, then APQR ¥ AABC.
\“{%’_ . .

B
Proof: Let X be a point om 0P such that ®X 2 BX and X is on
the P-side of GR. From Theorem V, AXQRZ AABC. Thus by
Theorem III, /XRQ ¥ /ACB. But by Property I-A of Chapter 6: there
1s° onl:;r tone_re.y“wjzth endpoint at R and containing a point on the, ..
_P-side of &R such that the angle formed by ythis ray and"RG 1s
‘congruent to [ACB. TWi‘ore X and P must both be on this ray and
- hence on the line PR, But X qnd P are both on the line sz? These
two Tines ‘can have at most Bne point of inte\section. Therefore
the point X 1s the point P and QP = BA. Now the conditions for
Theorem V are obtained and hence the two {1ang1es are congruent. s |
+ A triangle s called equilateral if its three sides are all”

congruent %o each other. A trie.ngle is called isosceles if some

o -




-

. Therefore, by Theoref II,
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two sides of it are congruent to each other.

most fundamental theorems gbout isosceles triangles.

theorems are used to prove various other theorems.

<

Theorem ViI:

oy

the angles opposite these sides: are congruent.

)

— —— ———— — ——

@

, -

We list two of the

These

We are given that PQ

Proof':

\

Weé note

to show that /QPR =

R

{R, Q, P}, for

?

Q

P

~ QR. We wish

that (P, @, R} &
™R
PR.Z PR (or RP)
GR = QP.
APQR Y

/QPR = /QRP, as was to be shown.

Finally we state the converse of Theorem VII.

Théorem VIIT:

ARQP., But /QPR corresponds

s

>

\

We are given that [XYZ T /X2ZY.

wwy

’

Y

«

X

Y4

. to [QRP under this congruence and thus, by Theorem III,

~

F 4

/GRP.

We wish to‘prove that XZ = XY

J
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Proof: Consider the correspondence as ‘follows:

' X=X

Yo—e?

I . Z=—rY
Under, this correspondence of vertices . v

© [XYZ corresponds to /XzY
o - YZ corresponds to 7Y ) .
/XZY corresponds to /XYZ.

But it is given that each arigle cited is congruent to its corre-
sponding angle. Also Y2 = ZY by identity. ( Therefore the con-

L4

ditions of Theorem VI are achieved. - Hence AYXZ = A ZXY.
Under this congruence f?-t—ﬂ—ﬁﬁ_and thus, by Theorem III, N

XY = XZ as was to_be shown. e
S P Exercises 8-4 .

- 1. Prove that all the angles of an equilateral‘triangle are -

» »

- congruent to each other. - -
2. ‘Draw figures to show that the side side-angle "theorem" is
not true. An other words, exhib-it two triangles which are '’ G
. Jbot congruent but for which two sides and a non- included\\\

angle of the one are congruent respectively to two.sides and

a non-included angle of the other.

3.." Give examples of two equilateral triangles which are not

congruent to éach other. Hence show that the angle- angle-

cangle "theorem" is not tr_ue. i .




4, Given a quadrilateril ABCD whose opposite sides are congruent,'

5.

‘e

8.26

A 4
i

\
i.e., BB ¥ TD and 7D ¥ .
Prove /BAD = /BCD and

/ABC X /ADC.
Given quadrilateral PQRS with

G 2 TS and R 2 5. |
Prove /PQR = /PSR.

160
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N V Chapter 9
Paraliels and Metric Properties of Triangles
Fd

1. Terminology and Basic Prppertfes.

4

Suppose Kﬁ and 65 are stwo lines in a plane énd ﬁa is a line
different from Kﬁ and 63. Suppose §6 intersects both K%'and 53

(in non-empty 1ntersec§;ons). Then Fa is called a transversal of

‘the two lines.

-~

-~Let the points of iptersection be E and'F as in the figure.

Assuming_tgg;various points are located as above we call /PEB

and'éEFD corresponding anglgs,., . There are three other pairs of

corresponding angles 1n-6ur'figure. Similar oneé are rfoted in

the proof of Theorem I below.

We call /AEF and /EFD altérnate interior angles. There is

™~
one other pair of alternate:interior angles in our figure.

Theorem I: If two corresponding angles are cBrigruent Eé

each other, then ég are the angles:QQ the other three pairs of

corresponding angles. . . '




R 53 cut by transversal ?3
4

-

o -

. L ET g2 ) .
ConéiQpr the figure on the ) :
right and suppose /XYB = /YZD. :
We gish to ‘show th;t . ’
/BYZ ¥ /D2M ) b
: [ASEX = /CZY and ‘
g /AYZ ¥ /czw
Proof: %BYZ = /Dzw, supplemengs of angles given as congrueht. \
2
Stmilarly /AYX ¥ /CZY, supplements of angles given |
—~ , . . as congruent. ®
- ’ Finally /AYZ = /CZW, suﬁblements of. angles proved to
N be congruent.

We next wish to establish a basic theorem about corresponding

.

angles*\ We are given a tranversal cuﬁting two linges.

Theorem II: If a pair of corresbonding angles are .congruent

to each other, thén the lines cut by the transversal are parallel.

We shall prove this theorem by contradiction. (Some readers

~)

may wish to use drawings of their own while reading this argument, )
We are given lines K% and

as in the figure. We are X -

-
-
‘§~~~

/
further given that /PEB ¥ /EFD.
(éven’if it doesn't look Iike ’ . Q
1t). ' Suppose X is an element of K%INGB. Let Y be a point on the

- i
\ ~ . ’




. N
ray BB such that Y X XF. Thus Y # X and Y is on the D-side of,
‘line PQ. Now considér AXEF and .AEYF. Let - ,
Xe—m Y =

. Fe E"
v . . :
EHF “e s

o

where the first listed points are though‘t(of as\ the vertices of

-

'QﬂXEF.
- s /
‘.| Now XF = ¥E by construction (i.e., defining ¢ondition for Y) .
- .EF ¥ FE by identity )
s /EFX Q’Z?EY because supplements of congruent angles are.
- congruent. .
- oo (ﬁ ~g
o o AXEF = AOYFE by the SLS theorem with the correspondence .

between sets of vertices as above. Hence /EFY = /XEF (corre-
sponding angles of congruent triangles) 'But'éPEB = / XEF
. (vertical .angles) and thus /PEB = /EFY. Also'z?ﬁp 2’[§FD (given) ]
and Y and D are,gnfthe,same side of Pd. Therefore /EFY = /EFD
(1.e., they are the same angle) by Property I-A of Chapter 6, -
which says there is a unidue angie congruent to Z?EB with one ray
FP and the other containing points en the B-side of Fa.

Thus Y must ‘be on the line &b. Therefore; line Kﬁ and line

R -y “*

CD have the two points X>and Y in common which is a’ contradiction.

»

- (Two distinct lines can have at most one innt in common--Property .

N

"I-A of Chapter 5.) Hence, the assumption that AB and &D nave a

non-empty intersection is false. Therefore the lines. are parallél.

h - e
°

. . s °
. o ] | ) -
. » ] .

3




e
.
< -
. )

‘ ~ :9’)* . > L
We wish to establish the converse of Theorem II.~,

Theorem III: If two parallel lines are cu by a transversal,

-
then the corresponding angles are congruent. . &
A\ B -
Given parallel 1inés B and é'ﬁ and ' E\ ,
transversal X¥ as in the figurg. " C . ‘W D
. * . Y‘t‘é‘

¥

N

Wex'{,sh to"prove that /XEB = /EFD. (Then, by Theorem I, the
angleé of all pairs of corresponding angles are congruent).’
There must.exist a ray E§ such that /XEQ X /EFD and Q 1is on the’
B-side of X¥. By Theotem II, £3
must be parallel to ¥D. But there

" 1s only one line through E paralrel ~
to D (Property V of Chapter 5). ) <o
Hence £§ is }":_Q £3) ana ' — o
" /XEQ 1s ZXEB. Therefore /XEB ¥ /EFD | \Y )
- as was to be shown, ° - o " . T
~

- Exercises 9-1

1. (a)- Provekthat if a pair of corresponding angles are <= \’

congruent then so is some pair of alternate fnterior

angles., ) 5 - u)e‘
~ (b) Prove the converse of: (a) '
2. Prove Theorem I-A: If~‘gwo alternate i‘terior angles are

congruent to each other, then so are the angles of the other

pairs of alternate interior angles. _\/ J
) -




N—
i .
Prove Theorem III-A. . If two parallel lines are cut by a

transversal, then the alternate interior angles are congruent,

’i‘f'y to simbfify the proo‘f"of\j'heorem II.

2. The Sum of the Measures of the Angles of a Triangle.
- T 7 -
In this section we prove the following wellaknown theorem.

’

Theorem IV: If o<, &5 and » (alpha, beta, and gamma) are
\ -

£he »(degree) measures of the three angles of a triangle, thén
<+ 8+ 7 =180, '
‘Give—n :
A ABC with 'o<.=-m([BAC);
- 8 = m(/ABC) and
« Y= m(/ACB).

We wish to prove that o+ G+ ¥ = 180,

Let PQ be the line through C which is’ parallel to AB. We may
regard Q as ontthe B-side of AD and in fact, in the interior of
/BCD. Thus, /QCD 3 [BAC (correspgndix‘g angles) and hence

« = m(/QCD), for congruent angles have equal measure. Also

- /BCQ ¥ /ABC (alternate interior angles--see Exerclse 3 of

Section 1) and hence,é = m(/BCQ) . - Now m(/BGD) = fa(/QCD) + m([BCQ)
=« +4 . But m(/BCD) + m(/BCA) = 180 (supplementary ’angles) angd
(« +& ) +7 =180 ora +2 +7” = 180 as was to be shown, S

~
9
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-

We speak of /BCD gs an exterior angle of AABC. (Note th%t
5 . l

an exterior angle of a triangle is not a part of the triangle., It

’

. &
won't be by almost any definition which is used. Yet it has long
e been customary to use the' expression "an exterior angle of a

triangle".) © o

We have shown in the pf"eceding proof that m([BCD) ‘e + 8 ‘

dasoc;éOand ,e;éOthen ®x+B >o< and “’“’",3 >B - Thus we ‘
fhave in efféct proved

*

' Theorem V- The measure of gg exterior ahgle of a triangle 1s

L3

equal to the sum of the measures of the two opposite (1nterior)

angles. of the triangle and is greater than either_gf them.k. ’
- A - —
- On the basis of these m8 and of the theorems of ’
Wi th

. Section 1, we are now in a position to state and prove several
theorems about parallels and perpendiculars.' We state some of the

theorems here and leave the others and all the proofs for the

i
«

exercises.

Theorem VI: If two distinct lines (in a plane) are each
-

perpendicular to a third line then the two lines are parallel.

i
) Theorem VII: If two lines are parallel and one is perpen--

_Theorem VIII: Given a line g and a point g. Then there 1is
n" <_—

 exactly one line containing P and perpendicular Eg,:&.

Y
* - |

/ - . . . .




t * -
-

dA,quadrilateral 13' a simple losed curve (in a plane?which
io'the union of four segments (called the sides) but is not the

union of three segments. (Note that’a triangle
is the union of four segments) and. 1s also'the & B
union of three segments. A quadrilateral has

four sides and four angles. As in the case of

“a triangle, we shall use the term "side" to

mean’ either a segment or its length (as convenient),

A parallelogram is a quadrilateral in which each side is

parallel to another. A parallelogram has two pairs of parallel

«

81deSe e %‘%é;

A quadrilateral whose four angles are right anglesf called
a rectangle. It follows from Theorem VI that a rectangle is a .

parallelogram. -

.

+ i - *

Theorem IX: The opposite angles 4f a parallelogram are ",

cohgruent to each other. ° - .

Theorem-#:----The opposite sides of a parallelogram are

congruent to each other (_CE are of equal length).

Theorem XI: The sum of the- measur& of the angles of a

parallelogram is 360. -

Note that frofn our 'definitions it does not follow that the
sum of the measures of the angles of any quadrilateral would be

3600 N " ¢ ' . T ’

.
.




-,

‘Tw0 examples are indicated
" on the right. Th; sum of cer-
tain numbers naturally associ-
ated'Wigh the angles of a
quadrilateral will be 360.
)'But‘ihese are not necessarily

. -
the measures of the angles

of the quadrilateral. b

b} . Exercises 9-2
. ®
.1. Write out a proof (as in the text)
© that m(/QRS)-=-m{/RPQ) “+ m(/PGR).

e v

-2+ How ﬁany exterior angles does a triangle have? How many

2

angles are represented in a figure which 1is the union of . :

3 lines having no point in common but such that each two |

.
’

-of them do have a point in common?

3. Prove Theorem VI. Hint: Use Theorem IV. Y

-

4, Prove Theorem VII.
5. Préve Theorem VIII. Consider two cases: 'ghe in which P is -
a point of £, the pther in which P is not a point of A.

. , . " -

¢ y
,

M .
-~ - -
. .




Prove Theorem IX.
Prov? Theorem X. -
Prove Theorem XI. :
Prqve that if the opposife sides of a quadr11a£eral are -
congruent tq each othef, then the quadrilateral is a
parallelogram. )

Show éh@t ifr Kﬁ and §§ are parallel lines, the lengths of
thé perpendicular ségments from the points of Kﬁ to~§§\are

all equal.

.

a

3. Some Iﬁéqualities AsSociated with Triangles--The Triangle

Inequality.
’ In this section we list somé properties without calling them
theorems. ' ’
1. Consider a triangle ( A ABC).

If AB > BC,

then»m(/BCA) > m(/BAC).
. ’ .
Let D be a point of,ﬁK such that -

BC ~ BD. As BD = BC and BC < PBA,

then BD ¢ BA®snd D is between B and A,

ABCD is isosceles with BC = ED. Hence /BDC = /BCD. Now -
' /BDC is an: exterior angle of A'CBA and thus m(/BDC) > m(/BAC).

§ 3
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9.10 -
But becduse D is ;n the interior of ZﬁCA, mQﬁ?CA){) m(/BCD). We
ha&e.the following facts, then, a }
m(/BCA) > m(/BCD) i
m(/BDC) > m(/BAC). ’ -~

* “Therefore, m(/BCA > m(/BAC) as was to be shown. Another way of

m(/BCD) =

stating this result is "If two sides of a‘triangle are of unequal
" measure, the measures of the!angles opposite these‘31dés are '
unequal.in the séme order",

2. Now we look at the converse
.of‘Staiément 1. '
A ABC. If m(/BCA) > m(ZBAC)., then
AB > ECT. ‘ '

Consider a triangle
A

We prove this statement by exhausting

-spossibilities. Either AB > BC or
AB = BC or AB < BC. '

-

"':-\' N :'\\/\. . “ : )
If AB = BC then the triangl§5§sqisosceleqAand4mQ£BCA)~=‘m(zg§pc;
. which is a contradiction.’ .
If AB < BC then from Paragraph 'l of this section, m(/BAC) > m(/BCK)
- which 1s alsota contradiction.
.Therefore, ?he only possibilitly left is that AB > BC which was
to be shown. |, S LD
) SR T . .Y
< e Qtn«i?} N N hd
S . VRt
h ‘&’%&gﬁ‘} ' »
E v -, VAR . .
<“'\~ "\ < \ \ ™~ N . \ 7 \ . . n.’a%‘iﬂ,’j\\? - ¢ \§i\
y B
- J

ﬂfv\?
Jmd.
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3. We are now in a position to establish the extremely im-

portant "triangle inequality" of geometry. The ‘triangle in-

equality asserts that the length of any side of a triangle is less
< ’ T_ - T -—
than the sum of the lengths of the other two sides.

In one sense, the triangle.inequality implies the "shortest
distance property of geometry. The straight line path from P to
Q 1s shorter than the length of the bfoken-line or polygonal path
from P to Q by way of R if R is not between P and Q.

Q

N .
We may restate‘he triangle inequality as follows: If a, b,

and ¢ are the lengths of the sides of AABC,” then a + b > c.
» AN

C - .

We shall agree that a, b, and ¢ are the lengths of the sides v
opposite the angles at A, B, and C respectively. From a
construction point of, view the "triangle inequality" property is
Just what we expect. For if c>a+ b then in tryfng to construct
the triangle. starting with side Kﬁ the two circlesg with centers at
B and A and radii a and b respectively would nct intersect unless

c =a + b and then the point of intersection wWould: be on BE.

,

.
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A

Now we give'a.n 1argf1ment basped .on our earlier assumptions.

.

‘e

We assume ¢ >-a + b, )

Let D be a point on BR such that BC 2 ED. Then A BCD is
isosceles and m(/BCD) = m(ZBDC) ) is between B a.nd AL

Con,sidering A ACD we have that AD > AC (evenJif it doesntt
looklikeit) or AD - c-aandasﬁ+b5cthenb<c-a.
But then m(/ACH) > m(/CDA).

o ,Now m(/BDE) + m(/CDA) = 180 . -
and m(/BCD) + m(/ACD) = m(/BCA) < 180.
Henbe_m(/CDA) = 180 - m(/8DC)
and m{/ACD)’ < 180 - m(/BDC).

Therefore m(/ACD) <m (/coa),

but this contradicts oixf' earlier statement,

Hence it is not true that ¢ > a + b.

Therefore ¢ < a ?;-Eb . .

@' ~

‘Exercises 9-3

“

1. Given three points A, B, and c.” Explain how by measuring 3

distances one can find out whether or not the three points
are all ‘oon the same*line. = . - .
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, P.
2. Suppose that { is a line and P is ° E
| a point nof on 2. Suppose furtheﬂb ® %‘
that B is tiie-foot of the perpen- LJ& 1
dicular from P to £ and A is any ° A 8

4
“other point of f. Show that PB < PA.

In other words, show that "the perpendicular distancegis the
shortest "distance from a point fo a line".

3a Let A, B and C be the vertices of a triangle.

Let P be a
point which is not on the triangle but which is in the plane
of the triangle.
A, B, and C 1is greater than-ﬁ(AB + BC + AC), 1. e.,-§ the )

+ Perimeter of the triangle.

.

5

Show that the sum of the distances from P to

W
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¢ Chapter 10

o . - e’

Areas, Volumes, and the Theorem of Pythagoras

" 1. Areas of Parallelograms and Triangles. The Theorem of

Pythagoras. N '

" We have seen 1n Chapter 6 that ifa rectangle has base b
and height h (in terms of the same unit) then the area of the

rectangle (rectangular region) is b +-h (in terms of a square

3 -
reglon of side one unit). ‘ . -
N . : .
h.= 3 - :
A}
b=2©6 ) oo h 4 o
. . 4 i
Area = 6 - 3 =18

[y

.
v
.
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10.2

We are given the basic properties of area discussed in
Chapter 6, Section 4., We will considér the f)arallelogram to be
labeled as in the figure. Sides AB and DC can be considered to
be horizontal with A and C as the "extreme" points in a: horizontal
sehise. (Draw a figure as you read this.) ‘
Let P X, and Q be ’che feet of the perpendiculars from A
and B to ﬁgand from C to ﬁ’respectively, The point X. might be .. -
D. . As AB and DC are parallel 11: follOWS from Theorem VII of ‘
Chapter 9, that AP _L AB, BX 1 AB and CQ_[_ CD’. Thus AP, BX and
53 are all pa’ra'ilel. Hence AQCP and BQCX are both rectangles.
Now ABXC.¥ AAPD and thus from Property V of Chapter 6,
Area (.4 BXC) ="Area ( A APD). From Prdperty VI of Chapter 6, we
may conclude thaft-:. ) ‘
Area’ (J BQCX) = Area (ra }’3QC) + Area (& BXC), ¢
and ther.ef'ore Area ([ BQCX) = Area ( A BQC) + Area '( A APD). '
Again from Property VI, .
. Area ([ AQCP) =.Area (/7ABCD) + Area ( A BQC) + Area ( A APD).

Area (/7ABCD) + Area {[] BQCX);,.-

Area ([J AQCP) - Area ([J BQCX).

(CQ)(sB + BQ} o
(cQ)(aB) + (cQ)(BQ)

Hence Area ([ AQCP)

or- Area (/7ABCD)

From our formulas, Area ([ AQCP)

and Area (CTBQCX) = (CQ)(BQ),
“Therefore Area (/Z7ABCD) = (CQ)(AB) + '(CQ) (8Q) -;'(CQ)(BQ)
: _ = (cQ)(aB).
'(‘ ) .
» ’ ‘ .o
175 '
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‘ Vi

This last formila asserts that the area of the parallelogram

. . I
is the product of the length of the base times the altitude.

V= ‘B/ 'h. This is wﬂét we wanted to show.

s

Note that elther pair of parallel sides could have been .

regarded as horizontal. From Probperty VII of Chapter 6 we conclude
- -

that
<

-

[§ V=bl:h1fb

o * h2 where

b1 and b2 are lengths of adjacent sides and hl and h2 are

—

the heights to these sides.

From the formula for the area of a parallelogram, we can
very easily obtain the uéﬁgl formula for thehafea of a triangle.
Coﬁsider A ABC. Let us
?egand.ﬂﬁ as the base.

Let D be the imtesdgetion
of the lines through C

parallel to #B and through A

B para%}el to'X,. " '

(The assimptidr that the lines don't intersect means.that they

would be parallel which means that both XE and the new line

through B would be parafﬁel to the new’ line through~C’ But then

we would have two lines fhrough B parallel to a given line, for
.'the new line through B'cannot contain A énd hence is. gifferent

from AB~0 '
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-

Now from the SSS Theorem A ABC £ A DCB and hen\ee

Area ( A ABC) = 5 Area (C7ACDB) ,

( l(m) h=2b-h

v

L
where h is the height of the‘}riangle (and of” the parallelogr%m).,
As 1In the case of the parallelogram, the formula for the

area of a triangle can be used with any particular side as the

s

base.

— &

The Pythagorean Theorem., The Theorem of Pythagoras has to

do with the lengths of the sides of a right triangle. Since the
sum of the measures of the angles of

any triangle is 180 t“ere can be at

most one right angle in eny triangle.

We call the side opposite the right

angle'the.hypotenuse of. the right
triangle and usually denote its length by ¢, Thte other gides are
called the legs of the right triangle. We denote their lengths

4

.by a and b. The Pythagorean Theorem says that in a right triangle

the square of ‘the hypotenuse¢” 1s equal to the sum of the squares of

the other two sides. . . ; . ~

3

There are a tremendous number of "proofs" of the Pyth%gorean
Theorem. .Even President Garfield once gave such’ a proof. We glve
one oﬁ the more elementary,geometric ones, €

v
-




]

§e<have not stated explicitly, but which follow from observations

. wezhave made %n the previous chapter. ,“ .

<>
~on FE and PA respectively as in the figure such that BQ = a and

i , _ 10.5 - \ C

In this proof we assume some properties of fectangles which

-

In this paragraph we descrfbe the figure above. We are given

the right triangle AABC. VTHere exist lines through A and B
"> < St
perpendicular to AC and CB respectiyely. Let P be the point of
S

ksni'
intersection of these lines. APBC is a parallelogram (rectangle) ;

»

and hence AP = BC = a while PB = AC = b. Let Q and S b€ points

AS = b. 'There exist lines‘perbendicular to AS at S and BQ dt Q
respectively. Let R be their point of intersection. ‘PQRS is a
re¢€;;gle with adjacent sides equal 1n length, Hence PQRS is a
square. Let E be a point of SR and D a point of RQ such that

"SE= RD < a. Then 1t may be observed that ABDE is a square of

-

™
side ¢. We leave the proof to the exercises. T

. v
L} . - "
. “

o 5

¢35 .
. . .
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LN »
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.
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Are
Are

Are

Are

10.6°
a (CIPGRS) = (a + b)(a + b).= a° + 23b + b?
a (3 ABDE) = c?, S © ’
a ( A APB) = Area ( A BYD) = Area ( A DE"R) = Area { A AES)
v =%a L

a (1 PQRS) = Area (3 ABDE) + Area ( A APB) + Area (ABQD)

. , . - + Area ( A DER) + Area A (AES)

Therefore a2 + 2a2 + b2 = c2 + 4. (—%—ab)
a® £ b2 4 2ab = ¢ + 2ab
a® + K= c° " as was to be ghown.
.- P . .

Hence;

R

Find the area of the region

k-4 -

* Find" the altitude to the
nypotenuse of the right |

Exercises 10// A

3 3
- of the figufe on the right. '
i . s . . . , ‘ . .\ ‘L
t ' : e
» . .\ .

"tria\ngle of the figure.

(m'f -

L

ies

Prove/that the lines through A and B perpendicular to AC and

Br

-

Equate tw4 expressions for the area. )

Exerclses 3 and ¥ refer: to the descript on of

’ the figure 1p the discussion about the Bytha-

gorean Theorém. . .

espectively must intersect. ' .

-

SRS . - & .
s ' ) ! "
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iR

" 4, Prove that ABDE 1s a square, Note that the sides are of equal
length (from the congruent corner triangles) Hence show one

’

of the angles is a right angle. . . :

.

+ 2. Other Areas and Decompositions.

There are various other figures for which we want to compute

o

areas. Some 6f theee are more complicated closed’regions in the
Dblane and some are surfaces or parts of surfaces of solids. In
general, the aﬁproach‘fg computing the areas of such f;ggres is to i
‘think of the figures as the union’of eimple figures.. Then we may
compute the areas of the rarious simple figures. -In some cases we
develop special formulas and use theﬁgior computations. But 1n

many Ihstances, ipedis éaéﬁer to‘rememb the geometric considera-
tions which lead to the formulas than t emember the formulas as
Such.’ (An exception is the formula.for the area of a paralleloéram,g

°

which can be considered to be like that for a rectangle.)

%,

’

A trapezoid is avquadrilateral with tw .péraliel sides such
N ]

\

that the other two sides are not parallel.

P CIE
The area ‘of a clo#Ld trapezoidal region may be found b{\one of—two

« standard devices. We may decompose it into two right triangula%

N
. ~ J oo «}
? 4 - . *
. I
) # .
. I ®
¢ - \ . J i ~
|
i i - o 1Y
- \ °
. !
3 4 1 8 O f
{ H
. e A b
-~ } i <




/P - ./

e ' .10.8

and one‘rectangular region as on the“left or into two triangular
regions as on the right: From elther of these we can derive the
usual® formula for the area as-§‘ (b + b ) where h i3 the altitude
(perpendicular distance between parallel sides) and b, and b, are
the lerigths of' the bases. ’ ‘

In applications of geometry;“there are a number of problems
which arise as to the total surface area of a prism or pyramid or
the lateral surface area of such. The distinction between "total
surface/ area and "lateral surface" area is the following: If the
solid concerned has bases (one or two) then the lateral surface,

* area refers to the area of the union0o§ the faces other .than the.
base(s) whereas the total surgace area/refers to the : area of the

union of_all faces. . é{/»;”;/f_d . . b .
. N
o ' Among solids that are commonly dealt with are prisms and

o

pyramids. A prism is a polyhedron (a solid'with flat faces) such
[

that some two faces are congruent and are in '‘parallel planes.
°* . °These faces are called the bases. The other faces are all
parallelograms (or rectangles for right prisms) and each of
tLese paralle]hgrams has la pair of opposite edges in the two _

ases. A triangular prism is a k

) prism whose bases are triangles.

Eh figure\on the right represents ™ ;,.": -
‘ T

h triangular prism. The one below . , V/A\\\ ¢

it is a prism with pentagons for .

‘ ! ‘ .
/{r”ﬁases. . - / /

b

-~k s

-~

AN
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A pyramld 1s a polyhedron with one face designated as & base

.

and with all the other faces being triangular, having a verﬂ@i in:
common;ans/ﬁaving'the other two vertices 6f each”on the base,

_ The figuresAbeiow represent triangular and square.pyramids ’ .-
(thg adjectives describing the bases).

} .
. < A, -
. ” : I +
- . ° A much more comprehensive treatment of polyhedrons 1s given ’
in Chapter 1%, The "solid polyhedrons" of this chapter are Yreally
3-dimensional polyhedrons. o
- k) . ’
i . Exercises 10-2° . ‘
. ‘ P .
L Derive the formula for the\area of a trapezoidal region by
( decomposing the region into tWo triazzu ar regions. .
k] . L4 ‘
T 2. Derive the formula for the area of a

apefoidal region by

decomposing the gion into 2 right trfangular and on
rectangular region. ) N {F )

- 3. (a) PFind the lateral surface area of a right pri#mnin terms ]

. i
‘

or the perimeter of the base and the height gf the prism.

., (b) Find the total surface area in terms of the result of (a)

o o <.

- f and the aréas of the b#ses. . . : o




» . [ . N

. * 4 ) lO.lQ

. ,
°

L, Suppose a square pyramid of side 8 hag" its triangulapr faces ¥ '

all congruent to each other. Suppose the -Slant height
(altitude of one of the triangular faces) 1is 10.

2 (a) Find the lateral surface area. ' . '—,
»j' * (b) Find the totalas;rface area._ . ! .
d ‘ v - 4 : . o7
b ’ . 3. YVolumes, ‘ - ¢

8? Seek a point of view which erables us to fing the volume ¢ -

of a complicated polyhedral region (i.e. inteprior of 3 polyhedron

. together witnh its boundary). as béfore we think of decomposing

the solid region into simpler ones--i.e. we think of expressing

the complicated solid region as the union*of non- overlapping

simpler regions. (As noted in the last‘éection, Chapter 14 has

a

-

a mq?h more comprehensive treatment of polyhedron J)

For volumes, we have available, S0 far, the Volume.of a
vrectahgular parallelepipe £ It is elther b . q . h (base X
. depth x height) or B . h where B=b . d and is”theqarea of a . ‘
; rectangular region which is regarde as the ba €. 4 .. . N

he point of view ¥ = B . n *u S out tb be a ﬁseful'on |

It is ‘also applicable to prisms - (and to'cylinders ?f discussed
4 . . .
in Chapter ll) '/. N

‘v,




[

P

)
\

;fchapter‘we can decide that the volume

* of the volumes of the triangular ’

V=B

height h 1

10.11

°

Let us start with a triangular

[y

right prism. By a construgtion'and

argument like Eha given for paralleléﬂ

grams and triangles in Section 1 ‘of this

of the triangular prism is %-that of

a rectaqgular parallelepiped whose bases
are rectangles of area twice that of the
trianguiar‘basgs.,
angular prism is B ¢ h.
into non-overlapping triangular right prisms.

decampose the base region into triangular regions.

volume of the prism 1s the sum

prisms. For our figure

. h;+ B, *h v

7 ° h + 52 3

(By + B, + ﬁ‘% < h
) + By + By

®- . -

=B «h Whére
B,, B,, and By are the ‘areas of the three base triangles
the area of, the pentagon. Th formula V= B¢ h is

to oslgqué§

the perpendicuién.distaggs\ﬂé?br

contain the bases.

isms (prisms\that are nst right prisms
en th

Thus it follows that the volume of the tri-

Now, any right prism can be decomposed

We simply have to
Then the .

1so applicable

The
p \J

,planes which

lnd B is ./

¥
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Similarly the volume of any pyramid canMWe expressed as the
sum of the voplumes of triangular pyramids by decpmposing the base

vertex of all of the triangular pyramids.

he - -

The hexagonal pyramid of our-
{
drawing is expressed as the

union of four triangular

pyramids. .

%— (B« h). A "proof" of the formula yses what is knéw#as

(/r

We now seek Ythe volume of a triangular pyramid.

Cavalieri's‘ Theorem and more mathematical apparatus than we choose

to use here. Rather we shall:simply .
try to make it sgem reasonable. Con-
sider lines throt}gh V parallel to §5
anda 'respectively. Using V<———->B
and pdints Uand W on these lines,

tfhere exists A UVW which 1is c¢ongruent ~

-l o
to 4 ABC and is inéa plane parallel to
the plane 'of AABC.

-

~

-

. into triangular regions and using the vertex of .the pyramid as the

Ti'}e volunfe is




- ,./\‘A; f s ' .
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Now prism (ABC) - (UVW) can be decomposed into 3 tfiaegular,
pyramids V' - ABC, AL UW and C - AW. ‘The base of the last of
thege 13 not a Base of the prism. -It seems reasonable and can be
proved by use of Cavalierﬂﬁs Theorem that all three have the same
, volume. Therefore pyramid V - ABC has 3 the volume of the prism

but the prism has the ‘same base - ABC - and the same height as

. the pyramid. Hence V(pyramid) = 3 (B - h).
- Returning to the case of a genen&}—pyramid——we—ﬂe%e—%ha%—the --

altitudes of the triangular pyramids we get are all the same as

the altitude of the original when we consider ‘*them ali to have

. . }‘ 3« -
-, .bases 1n the plane of the original pase.
Thus V = 3(B, * h) +3(B, - h) + 4. +3(B, *+ h) \
4 " ' N - /']

il
\
o

%(B +Bg+oo¢+Bk) '~ ="‘(B’ h)

~ -
{ -

The formula V = 3(B . h) is the formula that we were seeking.

v /\k" ~
€ ‘oo ks

-kl - ' EXercises 10-3 .

~ . . -

« 1. Find the”velume of an 6blique prism whose base is‘a (2 gy 5{
-rectangle and whose perpendicular distance between faces is 12.

.5 2. Find the yblume of a pyramid Jhose altitude is. 8 and whose .
basé 18 a regglar hexagonal region of sid‘ 2?. A hexagon,ie
regular if all its 'side’smarel%congruent and all :jite angles ; 'y

are congruent. .. .

A
4=

e




LY

. ) \JB iO.lw‘ -
4 .
3. 'Find the volume of a right prism whose-héight is 10 and whose

base is pentagonal as in .the figﬁref
\\ i ﬂ,g-\

.h; Find the’ volume of a byramid whose height is 6, qaese base 18

.

a parallelogram as in the figure.
e .

v S~ N

5/ Draw figures illustrating problems (1) through (¥).

L}

.




Chapter 11

. Circles, Cylinders and Cones

N

v 1. Terminoiogxi ' - . ¢

For the first part &f this chapter we deal with sets in ‘the

[

plane. ,In the final part we shall deal with cytinders and cones

in Space. !

‘Let C 'be a point and let r be a'number. Then the circle
with centeraet‘ C and radius r 1is the set of all points (of the
plane) at a distance r from C. '
et R be any line which con
tains C. On 2 there are twL\

-
*

rays with endpoint at C.

eacﬁ‘of these there  is exact1j~ .
one poing of the circle, for on

each there is exactiy one point

at distance r from C. .

1iné through C, tl‘[erefo;r _ ‘ : .
contains'exactly two points of the circle. /

1 Ve usually draw a (representation of a)Pcirele by uWse of a
compass. - We draw t?e circle in such a way tha‘ it fits our de-‘
scription of a simple closed curve. We start drawing and without

lifting the pencil draw until we return teethe point we started

)




LS

L ‘point at the’ center of/the cincle and having the other endpoint on

n 11.2 . ’

with., Except for [the first polnt we cover each’po}nt only once.

Thus a bircle i An example of a s8imple closed curve. We can, in

s
i

the\case of ,a gircle, say exac%iy what we mean by its interior and

by its exterior. v . : . .
g

N

7 ) [

~ The interior of the eircle with center C and radius’ r is
'the set of all points at a distance less than' r. from oy The 1
- exteridr is the set of a11 points at a distance greater than »r
from‘\C. . / k o o ) Co

- < .
v

» \
A tircle is a curve. It is not the curve together with its

~

. ' [ . . L4
interior. A circle has a center (exactly‘one centeb, in fact)

and a radius. Thé center is a point but the radius (as we'hade

v - ‘v
used it) is a number (or length in some contextsﬁ Sometimes
v “
the term radius is a1so ‘used to denote ‘a segment having o

the circle. 1In traditional terminology the term "radius" is used

in both these senses. Little confusion results fromukhis as it is

g3

usually clear which sense

radius with both meanings.
pn
| s L8t us now prove that 2 circ cannot have twp centers. al /

-

"':./v .
of ,the circle. The line <TF ust intersect the circ;e’}

~j‘ '\ N PN

points. Call them P and Q as in the figure with Gy

*Q and 02 as in the figure. N g . . '@{
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‘Now QCy= CyP as C; 1is a.center

. of the circle, and QC,= C,P ‘as

. 02 is a “nter of t? circle.

.
+ . ;

Jlso\ché,'ch . .

S, Thus we ‘have ClP = ch
sy ‘ ) .

QCl < ) ch

13

2 .
.
Therefore, C;P'< CsP  but, from the order of the points on the .

line, ClP >_02P. We have a contradiction. Hence a circle can
have at most one center.

let us consider another basic property of circles. Iet

Dl ”be a circle. If A 'is 4n the interior of Dl and B 1s .Lﬂ

the exterior then BN D ‘1s exactly one point. We do not

prove this property. -However, let us note that 1t agrees with our
N .
earlier observations about the interior and exterior of any,simple

LY 14

closed curye. The segment AB 'is a polygonal path from A to B

and hence must. intersect the simple closeo curve. ‘ .

A tang,%nt to a circle 1s a line that intersects the circle ‘1n
exactly one point. It follows from our ohservation above about

rays that a tangent to a circ.le cannot contain a point of'\lhe .

1Mérior of \he circile-
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- : ., ’
We state one of the standard fundamental properties about

1
»

circleS and tangents. “

Property 1: If D 4is a circle with center C and B is

X, then AT is perpendicular to Exci
f 4 e

]

ggent to D at point

Proof:

There 1s a liney through C perpendicular‘to “iB>
%

let ¥ be the intersection of

‘Suppoée ¥

~

AB” and this line.

"13 not X.

8 Now /JCYX 1is a

The sum of the

right angle.
measures of the aﬁgles‘of .
There -

4
Hence

A CXY 1is equal to 180:
~ fore m(/CXY) < 90.
—- - m( fe%8)—<- m( /CYX) .

' ¢
opposite the ;arger angle is 1onger than that opposite'the smaller

The side

Y must, be 1n the 1nterior

Therefore CX > CY and hence

angle.

b ]
of D fdr CX 15 the radius. But, as we have observed, a

tangeﬁf‘to a circle cannot contain a point in the 1n§erior.of the

’

Therefore our assumption that “Y is not X is false.

X, CY [is “CX,

circle.

Y must be and thus} CX 1is perpendicular to AB.
| o® -
Exercises 11- 1

+

Prove that a 1 ne cannot 1ntersect a circle in a set consist-

»

1. &
" ing of threée or more points. .

\ ]
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‘ ¢
‘ ¢ Q « . 2 b .
2. A chord of a circle is a segmen} ﬁéose endpoints are points of

\

,(the circle. Consider a chord that does,np% contain the center

the circie.
the chord and the cehter of the circle is gerpéndicular ﬁo,the

v

) I -
let E be-a point of CA ’
¢ not o TEY 'let B bea
point-nof on <CK, Fop con-

0

}/\\ venience let us take B

% s ..
; above the line CA. Now in ) L. .
L 2

Chapter~6 we sa that the’

2
H

=

‘ family of all r!ys with endpoint at’ C and contain ;pginié on

the B-side of A could be coordinatized using numb ‘fromﬁ_o

to 180. ,We callled our unit a degree.

points on the’ *hon-B-side of CA we choose to coordinatize thg“

* I <

Prove that the line céntdining the midpoint of
1 4 -» .

..chord. : . o b
3. Prove that if D and E .arve distinct circles then DNE |
* * » .~ .
. cannot be*a set consisting of three or more points.
- &
2. Arc Meagsure and Length. T R
. : - Ed ¥, s P
v}> / Consider a circle with . s
) center C. t Eﬁx-be a oL | N
’% ‘ - 19Q )
,ray. :F?r.convenience~we , 4“ 135 a B.‘
J think of GA> as horizontal LT ’
. with® A to the right of C.
%

For those rays which contaiﬁ

)
1
> s
’
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..

,/}by adding 180 to.their degree coordinates which one would get

~

by starting with CE as the reference (or zero) ray. The.ray 'EE>\/
is considereq as having two alfernative coordinates--0 or 360.
The ray CE> is the 180 (deéfee) ray.
This coordinatization of the family of all 'rays with endpoint
at C 1indugces a coordinatization of the set pf points of the
circle. Each point of the'circle is identified with the .
N coordinate of the.ray cqnta{ning It..
Sunpose P and Q are any
two points of a.nircle. The set
. {?,'Q}-separates the circle into

two sets. [The union of either of

these and {P, Q} is called an
arc of ‘the circle. The symbol

-

PXQ is used to denote the ayc

which chtains X and haslendt

-

,+ . points P and Q. Note that :

N LN .
PXQUPYQ is the circle of, the -

figure above. . ,

We tan now dgfine what we mean by the degree measure of an §

arc. We may consider the circle to be cgordinatiZEE\as above.

- -

Case I: If ?&6 gggé_ngg_contain the point'with zero Lo
- . éoofdinate then the degree meaéufe of ?;a is
‘€n§ positive difference in the coordinates of ‘ ‘ \
P and Q. ' ' ’




.

. . i
Case II: If PYQ does contain the point with zero

~

coordinate and neither P nor @ 1is such
point then: the -degree measure of PYQ 1is

360. minus ‘the positive difference in the

-

coordinates of P &and Q. .

-

[

If P or Q 1is the poin{ with zero co-

ordinate and the arc §§a does not contain
other points with coordinates close to 360
then the degree measure of PYQ is the
positive difference in the_coordinatés_of{ y
P and Q with zero as the coordinate of

‘P or. Q.. .

D= .o . .

If P or Q+ is the point with zero co-
ordinate amd the arc §§3 does net contain
other points with coordinates cTbse to zero )
then the degree measure of PYQ is the M”wt
pos1tive difference in the coordinates of:

P and Q with 360 as the coordinate of-

P or Q. < ~ .‘\
The degree measure of an arc is not the "1ength" of the arc.

r

Rather it is the measure of the amount of "turning" of the arcr

The closer the arc is to a whole circle, the closer the degre7

[y

.

measure is to 360. . ‘
” . -




‘determines an angle whose vertex is the center of the circle and *

'a central angle. ,The measure of the central angle is the degree‘

.0 to 360.

-lay off the radius in straight

11.8

An arc of a circle with degre'%e measure less than- 180

whose rays contain the endpoints of the arc.’ We call such angle
3

measure of the arc determining it. For_ some purposes, it is

convenient to think of an?rarL of a circle as determining a
[

"central angle" whose yeasure 1s the degree measure of the arec.
1 “ - _
This allows "central angles" to have degree 'measures anywhere from .
‘ J ‘~ ) : R
,length. Intuitively wée know that a cirgle must have length. |
We can wrap a string around a circular object and then measure 1it.

!

ws can mark a point on a bicycle wheel tire at contact with the'
ground and note the length of the path made by rolling the wheel ’
until the marked point returns to contact with the ground.‘ ‘
Experimentally, the answer comes out to be somewhat more than 6
times the radius (i‘e., 2Wr5 Sometimes ‘the length of a circle

is. called its circumference.

; " Now, mathematically, if we

want to measure'the length of a

circle we can think about doing

it in ‘the following way. Start-

ing from a point’ P on the circle

line segments §ix.times. “Then the
) : .




‘ 11.9 S
2N '
central angle suybtended (determined) by,each chord 1s a 60 degree
angle for we have eduilateral triangles formed. ,Hence me would
have inscribed a hexégon in the,circle. The hexagon 1is called
‘regular in that all of its sides are congruent and all.bf,its~
angles are congruent.' it seems clear Fhen thdb the 1ength-of the
circle is greater than six times the radius. But the number :6r
can be considered as an approximation tovthe length of the.
circle. Now we can bisect each of the 6 central angles (by find-.
ingothe,midpoints of the chords if we wish) and determine 6 more '
points“’or} the circle. ‘Using the origina‘.l 6 and the 6 additional
ones we could coustruct a regulapr 1l2-sided polygon. Its length
(perimeter) could.be computed {or measured) aend we should have a
better.approximation for the length of the circle. The process
can be continued to produce a regular‘24-sided,polygon, tben a,
Tegular 48-sided one, etd. At each stage the length of t':pe .
polygon 1s less than that of the circle but close tO it. The’
iength d%_the circle‘is the least number‘whidh exceeds the
lengths of all the inscribed polygons so'obtained. The ratio ?f
this least number to 2r (twice the radius) is calledTT .Thus the

length of %the circle is 2»r. It 'can be established that

T(=3.141592 . . . . . . As.we nave been led to expect, 2 T(is

somewhat more than 6. " =

- N . -
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0

~: have been made in recent years.

The number, TT, exifts in the nature. of things. Nobody has
° : PR SN

any control over its vaJue. We can think of T as being bracketed

ete. Thus
3< T < 4 .
: S 3.1< T < 3.2
. 3.1% < T < 3.15 )
.0 ) °'° 3.141 < T < 3.142 ‘
:: — ete. *

It furns ot that ke decimal expansion for 7T is not a repeati

°

ﬂdecimal expansion) i.e., Tr 134not,afrgtional ﬁ&mber.' Sometime's
the rational number 22 is used as'an appréximation for ir.
However, 22 ysinot T , 1t is simply close to T(. We might
 write M ~ £=/. Computations of,7T to over 10,000 deci i piaces

5

If a circle has length, then-arcs of the circle should: also

»0

°

. have length. e degree measure>of an arc 1s a certain number
Q +

between 0 and 360. In a sense, 360 is the degree me sure of a

P

LA

. circle., Because congruent ares should have equal 1 ngths a

ngEFSe two arcs of the same degree -measure and on/thgfame circle
' ()

are cgngruent, we can say that e,

- A

" length (arc) degree m¢asure (arc)
length (circle) asure (circle) .

°

3




In otherlwords . o =

degree measure (arc) . o

length (arc) = 360 -

.
P

Thus, forvekample, the/lengt@i9f a seml-circle «is

N ' ~ ) ' ‘ H o /
‘ or 7T r: as our el AR .
: , : ‘gssﬁwez«y%ww'fr*v"'iif;‘““"
intuition tells/us it olght to be. - A , X .

Important questions come up with respect to how t6 use T in
. / - . M } . d : . -
computationg. The question, "What is the length of a circle of .

)
radius 10°"¢has an answer which can be written in the fermx?X\

\]

Clearly 2 7Tis a perfectly good number. It is the product 20

times T/  Ndmerically it is between 62 and 63. A decimal approki—

~mation f 20 Traecurate to 2ydecimal places is 62. 83 We have
alread learned in Chapter 7 that in practical problems, if the

ra€ius/of a cjrcle 18 given as 10, then our convention calls for -
N ]

gnas mpqion of precisionoeither to the nearest 10 units or to

the nearest unit Thus in a practical problem _any answer for the

lengt of the circle which carries more than two significant. .
S & ' . ) E
digiys is really ebssentially unJustified We should write the s

- 5
answer as 63 or' leave it 1fi the form 207T ° -

In t forhula, circumferencei- 27r the number 2 is regarded

as complftely accurate, TT ad completely accurate,'and r as =




. - 11012
. , v L (3 S
' ‘being as accurate as we choose to give it. T‘h‘e humber of -~
. signif%can‘t*digits we use for T should not appreciably exceeo

. . . — .
the number of diéits to which r 1s assumed accurate.
5 v )
e — Lf-there T aﬁs%to, get students to use several 8ecimal

¢
b ? places of /7T for cotgpuﬁ

Ty

onal practice, then’ specififc instructions

. Jfo this effect cat A :I,ven. But }& a-practical problem accurdcy, , -

° \‘ 3

of ‘ani answer should not‘bel stated or implied beyond that justified

131 the measureme'nts concerned To do the contrary.is to give a *
"v"‘) wrong answer an answer which is-definitely geceiving, an answer
which ‘asserts precision which 1s si?npl.y not there. : ' LT
. ., Exercises 11-2 - v /’
1. Write out the first four places of the decimal expansj,on of; .
. - Compare with the value of TW¥ given in the text. J‘!Thus, shqw : -
-/that _7‘__1 T " . . S .

\ 2. Draw two° arcs whose degree measures are each 60ﬁt,sych that . -
. r - *

one 1s twice the length of _The othe'r. ‘What can you say about
L > |

the radii of the circles which contaiﬂ these arcs? ~
IR T RN
= 3. Using the resz&lt of E;grcise 3 of Section 1, explain why an

A -t R

.arc can bef subset of only one circle. In other words, 1if
M an arc 1s/determined the circle which contains the anc is’
‘ .1 ) . . .
determined. . . ’ <

' 4. Give examples and draw figures siiystratingCases I, 4l, III,

R * [

and JV for an arc.of degree measure 60. . 4

."

w
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> - < o ”

» -

Find the’ length of an arc of degree measure 120.1f the circle

‘ conﬁainingathe arc has -radius 8.

In finding the‘circumference of & eircle whose. radius is

measured as indicated, what approximation should you-use for
aw ’ v .

:" 7l and to how many significapt digits should you express the

"+ the length. or.

answer? (There may be questions of. judgment in some cases.)
2 - ¢ ¢ . i
(a) r=8.. . ' ' =
(v) '§ = 8.0. - ' ' -
{cY* r'= 82,
e 4 Coy
(@) r = 8.021. | ; : )
. ) P 5 U -
(e) r= 8. 0214 f g . ..
From the formul ileﬁgth 2Tr it 1s possible to find either

':; radius if the otheris known. Also as the

f"diameter a / s twice the radius, knowledge of, the ‘diametér

or radius y%;lds knowJedge . of the other. , Find the other two

"or g, r,:i\,@d i - h .
“(a) 1'20 ( - .
() r?}z% . ' R
(e ’-;;;7{2 . , oot ¢
. é ]
Y e .
) \ : = -
o _,\-
- § T " ’ ”
. . - , ;
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3. Area of'a Circular Region. ‘ T

Consider a circle with center C and radius wr. The circle

1s a simple closgd curve. Let M o -
. ———= =—— .

be the cibsed region bounded by
the circle. ';ﬁ Chapter 6 we have
‘étatea that with respect to a
given unit (sduare) rég%oﬂ there
a1s a number which represents the I
area of M: For simﬁlicity, we |
;sometIm s’talk about the area of a L.___
circle and mean the'area of the closed" i <
region boundéd by thé‘circle. '

L ¢
Ourﬁproblem is to get an expression or formula for the area

\

|

. - ‘. -

|

; |

of M, ﬁe might note as a first approximation, -that the area is

~

¢+ ¢clearly less than.4r2, for M is contained in a square region of

»

|
area 412,  We would, guess; probably, that thé area would be, , I

frélated to the number 7{ as introduyced in the previous section,

-

To develop the formula fqr'the area of M we use something bf a

-

trick. We think ‘of expressing M ' ’ ‘

as the union of non-overlapping

sectors all congruent to each
¥

other. Iet us suppose that we'

have k of thew and .that k

*is an even number. We call them

>

S1 5 Sp 5 —, Sy -

*
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By ProPerths V and VI of Chapter 6 the area of each Sl is

k ' . (Area M). Now thé area of the circular region M 1is clearly
the area of the region represented below, - )
. ALY .

¢ v

. \ < .
This region is bbunded by a simple . closed curve. It is somewhat

like a rectangle or a parallelogram. However, the top and bottom

are not segments but unions of ares of %1rcles.- If k 1is a 'large

even number then the region is very much like a rectangular'region.
The area of the region;which is almost rectangular should be

approximately the height ‘times the length of the base. For large

k, the height is almost r and the length of the "pase" is 1/2
\ nd the _

f
-

" the 'length of the circle. Therefdre the area shquld be approxi-

)

mately as ‘indicated below:’ : ,

‘Aréa ™ r -%(277'?‘):\71}'2. .
) . ,
For very large k, the formula is very close to, being correct as
the figuré is almost a rectangular region. Hence we seem jﬁsti-

fied in concluding that Area(M)=7 r2 since the area of M’ is N

v

the area of each of these odd shaped regionsbwe have been consider-

-~
ing. ) =

LI
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Areas and Volume$ of C&lindefs and Cones. A gylinder, a cone,
© and a sphere are geometric opéeets in space whose descriptions
elther depend on or are like that of a circle. We snall investi-

. gate the sphere in Chapter 13. Here we consider the cylinder and.
the cone and we restrict ourselvee to right circular cylinders' - |
and right circular Spnes The definitions given here are for

&i @pplication to mensurﬁtion formulas\\\Somewhat different definitions =

«*<"%§y be given in other contexts. ’ o '

\ ﬁ&%ﬁk Consiger two parallel planes which we shall regand_as

horizontal. Let Dl and D, be circles in the lower p}ane as in

the figure .slet Dj' be a circle.in the upger plane with Dl'

directiy above 7D (and congruent to it). Let P be a point in
‘ the upper plane directly above the 3enter “of D, . ‘ v
~ - ]
S T 4
. - (.’ . * LY
. N )
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. . The cylinder with bases Dl and Dy (ortmore precisely the '

closed regions bounded By D;}nu\\nl') is the uniorb of all

vertical segments éach of which has one endpoint in oy and?khg

. iot-her in Dy'. »

¢ ¥

. The cone with base D2'and vertex P 1is the union-ef all
, ' segmgnts each of which has one endpoint P ‘gnd the og&her in D2.

From some points of view it I8 convenient to regaird the

L3

"cylinder" and the “cone" as contalning the.circular regions which
are bases-of these sets. With the bases included, then the
regions bounded by the "cone" and the Yeylinder" have volume.

* A cylinder and a cone each has area called its lateral

I's
surface area. The sum of this area and the area of its,bases -

[y

~  (or base) is cal;éd ‘the total surface area of the cylinder (or

,cbne). There are very close analogies between a "cylinder" and a
T prism and between a "cone" and a pyramid In fact, the cylinder
and the cone can be regarded as "limiting cadeg” of a prism and a

. .pyramid respectively by regarding the base circles as "limiting
cases" of regular polygons as in Section 2a Thus it is‘reasonable
‘fo conclude that the formulas for volume, lateral surfaoe area,

"and total surfao\e area are like those for prisms and pyramids.
We consider h ~*%he distance betweedk%he base planes, r the
radius of tne base circle, and £ the length of a Segment from P

L4

to D2 . . . g .
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‘ . - o,
. .
~ i Volume (cylinder)- n(7r2) =T lr2h
Area (lateral. sunface of cylinder) = h(2xr) = 2prh -
Area (total surface of cylinder) = 2mrh 4 2nre :
S ' ' S ‘
- R Volume (come) = 3lh(/Tr2 =l7'(r2h ) ,

A )
Area.(la’ceral surface of cone) =

E(2741«),(’ Ted ,:/a '
Area ('co'cal surtace of coneT 77‘r,(-+77‘rth B s 7

b

It is no’c impor’can’c to remember these formulas as such It

is impor’can’c to be able to think of t!s@ geometry of the si'cuation

and(ﬁhus to recognize what the formulas must be. N

} I * ¢ -
.
-

i Exercises 113

£ ' .

1. Explain why the figure of the first par’c of ’chis section, would

be 1like a trapezoid if k were odd.

"2.' In terms of the proper’cies of Se€ction 4 of Chapter 6, explain
wquhe afea of M :lu§ ’che area of the odd-shaped figure used.
The label on an ordinar':y tin' can represents a cylinder (“1e _
way we have defined it). The label may be laid fla’c and forms -
The area of; the label is ’che la'ceral é

pr

‘surface area of the cylinder.e» Explain 'che for'mula from this

]

a rec 'cangular region.

point of' ¥iew. '
. /\\ »
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4, An ordinary conical drink}ﬁg'qup represents a cone (the way we

"

T have defined it). ,If the‘cup is slit to the vertéx, the paper

»
. may,be'laid flat forming a oircular -
regiod with a secfor removed. The l
af;a'of the péger is the lateral +. .
surface of the cone. .Explain the
formula for lateral -surface area ¢
from this point of view.
.- 5. Compare the'geometric points-of-view for.aréa.and volume of
“r?(a) a prism,-and (b) a‘cylindera . N
o6. Compare the geometric pqinfsiof—view fer area and, volume of
e * (a) apyramid, and Kb) "a cone. _ ° C

7. Find volume, lateral su%fgge area‘gnd total surfac;‘area of a ) .
eylinder" height 8" énd circumference of the base 18 TT.

8.' Find volume 1ater_}\§u?face area and total §prface area of a d
Mcone" of hei 8" ahd:rad%gg of the base 6". (The "slant =
height"Jﬂaéan be;found by usd sl the Pythagorean Theorem’) o

: . . :
< * ¢ , ’
) P ‘- - .
- ' ‘/, d
[y ¢ @ ° ‘}
X - , o " E
, o
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- o Chapter 12 ‘

- The Coordinate Plane and Graphs .

.

. g e et e \/ - !
1. 'The Coordinate Line and the CoordinatevPlane.

In Chapter -6 we have’ observed that a ray may be coordinatiied ’

with any segment as a unit. This coordinatization of the ray

Y

gives a one-to- one corqpspondence between the set of positive&real

ﬁnumbers and zero and the’ set of points of the ray.‘ We correspond ,
~ zero to the end point of the ray. ) . s

,_ P Q - R, =~ & -
0 t. | e - 3T - 4 5. e

2 L 3 .
The, correspondence preserves order in the following sense., If

‘P, Q and R are ary three points of the ray with Q betweén P and R

then the number corresponding to Q 18 between the numbers corre-

&

sponding to P and R. The correspondence also preserves distance

., 2

D in the following sense. I1f Pq = RS, then, of course, PQ = RS and
further, PQ (the length of PQ)is the absolute value of the differ-

-

! ' ence between the coordinates oflP and Qq In the figure, PQ is

L

approximately «Q.. A similar statement is trué abqut RS.. To

coordinatize the whole Iine we coordinatize a ray BR of the line
with B-—a—o. Let .C denote a point ‘of AB but not of EK Then we
j” cooraTnatIEe‘ﬁﬁ with the same unit segment. . ’ '

4

_ ' Now Af we think of assigning negative values to the poipts ©

]

of'ﬁﬁwinstead of the corresponding positive values we have the

T 7 usual coordinatization of the 1ine. In this coordinatization ' .
-y o . . > i’ .

- - 01201

| e S e LI 3 " ’ v
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order and "distance" are preserved as in the case of the ray. We
customdrily think of coordinatizing a horizontal line with the
points with positive coordinates being to the right of the zero
point.‘ Now by thinking of the line we . .

Cc i ‘ B : A

———). " . b P
+ +

-3 -2 - 0 R 3 /4
can easily tell what ne mean by the statement a < b. We say ‘a
is less than b or (a < b) if the point whose coordinate is a -
1s  to the left of the point whose coordinate is b. For example,

-2 ¢ 16 ,
2¢1 ., , _
-, ‘ , -2¢0 ‘.g o

S 2 ¢ -1 . )
y -5 < -2 : s
We also ‘say that b is greater than a or (b > a) if the point? : -%
corresponding to.b 1is to the right of the point corresponding |
to a. We use the symbol ">" to mean greater than or equal to." '!
. Note that ¢ > d means geometrically that the point whose' cq- =° ‘

|
ordinate is ¢ is not to the left of the point whose coordinate:

~ ) ‘ 4 o
ts d. B ; ﬁqz [ 4
\

Having in minﬂ”%he principles of cdordinatization of the 1ine

Qe can now easily coordinatize the plane. Think of two perpendi-
cular 1ines. Lonsider one as horizontal. #We call the point‘of
intersection of the two lines the origin and label it by O (oh).

: | )

e f .

!




A

'right and the vertical 11ne with positive coordinates upward.

coordinate lines the a.xes, calling the horizontal one’ the x- a.xis

i

] & N ) '
Coordipatize the horizontal line with positive coordinates to the

AN

LA

We

customarily use the same unit for both lines. _ We call the *two

and the vertiqal one the y-axis. We may label the akes with our .

scale and put the letters % and y as 1ndicated to the- right and up.
\

__Now to coordinatize the plane We think of ordered (or sensed) ' .

pairs of numbers. The " ndered" means that in general (a,b).1is
, b
not the same as (b, a) Each ordered pair (a,b) is to correspond

to one point of the plane and each point to one ordered pair of

numbers. We set up the one-to-one corpespendence as follows.
0 Y N
A i3 . !
. I - « 1 [ ,
. -2 % . .
-_—‘-.—k e BT Moo eyt T-—-_t. ‘ - s .
3 i o
]
- |
o N . N N |, 4 -
e IR O ., 0
bt S A X~ COORDINATE OF P IS 22 ’
\ N IO ) -2 Jg Y~ COORDINATE OF P IS l-5i
T #e =7 4.‘3 )
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For point P of the plane, the coordinate on the x-axis of the

foot of the perpendicular from P to the x-axis is called the

X-coordinate of P. Similarly the coordinate on the y-axis of the
[ - '

foot of the perpenqicular from P to the ylaxis is called the

« y-coordinate of the point P. We write the x-coordinate as the

finst number of the ordered pair, the‘y-coordinate as the second.

Note that, the”y-coordinate of any point on the x-axis is zero.

What is the x-coordinate of any point on the y-axis?  The

-

coordindtization process we ‘have described clearly gives‘us a
one-to-one correspdndence of éhe.bype we seek. ,Given the axes,
for any point there is a unique ordered pair of real numbeps, and

.
for any ordered pair ‘of real numbers there is a unique point. In

the exercises we develop this aspect further,

v

The union of the axes separates the plane into 4 sets of

‘points. Any one ®f thése, together with its boundary, is called
a quagrant.' W/ designate the upper right hand‘quadpant as the’
firép quadrant, the upper left as the second, the lower left as
the third and/the lower right as the fourth.

Having the concept of a coordinate plane we now can state
exactly what is meant gy saying that any figure in the plane ¢
be freely moved withoué changing its size or shape.z -

o #‘ Bty K ; ,

~gi”
T
L,




. 12.
\ 5
b ‘ R ""’
Let H be & certain set of points In the figure H is.the
closed region boun&ed by the simple

closed curve.

Suppose we are given any point P and any two points Ql and Q2 such

: <
that PQl = PQ2 = 1 and such that PQl +§ perpendicular to §62.

Then coordinate axes exist with P as the origin, Ql the point (1,0)

¢

and Q, the point (0,1). (We do not have further control over

positive directions.)’
'FE

e label the axes as the x®

«

and y' axes (the x-prime

and y-prime axes).

I

\

“to the x' and y! axes are the coordinatqs of a point H with

irespect 'to the x and y coordinate axes.\ For example, the point

(2, l) (with respect to x and y) 1s a poi' t ‘of H; —Tﬁe;pﬁiht {2,1)

(with respect to X' and y!) 1is required be:a%point of H'. It
will be frue that H! 1is congruent to H. We have”'freely moyed" H

to Hf’because we have. been able to choose the Point P and the

&
<




3 freely éubJect only to the restriction éhat
d PQl is perpendicular ‘to PQ2 'Note that' because

,7-

Thus distances wil be preSérved. v -

L.

g . .
N A
\ ) Exercises‘12-1

l. Draw a pair of p pqn’dicularslines.r ééll éhe intersection

. 5
the point O and lay off common 'scales on the two axes. . .

what are the coordinat b ; .
P, @, R, S, and T? What ’ \ |
are the coordinates o} 02 ! \ 0 1 5 —

) (We will have to estimate: 4 T Tt - °R

coordinaées that are not

clearly whole numbers).
3. (a) The IV quadrant is the set of, all points (a b) for
which a >0and b ? 0. - -

P e v e e

(p) Make similar stategents about the I, II,.and.III

quadrants. -

rog -



£

-

: ‘ 12.7

- % . . . . s s

k., (a) What is the set of all points with x-coordinate gegatiye?'

~b) What is the sét of all points with y-coordinate greater °

. . 1 CT
than or equal t¢ zero? . B

.

[y

5. (a) QWhat 1s the set 9£‘3I1”points with x-coordinate equal

to 0? ‘ ' ‘ I

(b) What is the set of all points with x and y-coordinates ¥
both.zerof ) '

(g) What is the set of all points with at least one coordi-

- nate zerQ? Lot

v . e
2. Graphs of Algebraic Statements or Sentences.

Consider any statement about a number x and a number y.:
Examples of such statements are x + y = 10,,x > ¥, x =2
(this qualiffes as such a statement beca;se it says that x is 2

and specifically does not restrict ¥)e ¥> -1, ¥y =3+ 2x and
y = x2. Frequently, but not always, the statement is an equation

or an inequality. We call such a statement an algebraic statement

\abput x and” v ufﬁ?ﬁﬁbf . * -

n

Definition: The graph,of an algebraic statement .about X and

— . i c— t— —— g et

Sistatement true (satisfy the statement) .

This is .a very important definition. It is the key relation;:_

gt Tndto it 2 §

ship betWeen algebra and geometry (between aigebraic statements

4

e

¢

- .

.




.t . s ' % :4 : . &
or sentences and sets ox points). The Tormulatiqn an cultivation -

R/

of the point of view leading to.this relationsh%p between algebra '/‘*;

'and geometry is credited to the French philosopher and ‘mathema- . °

tician, Rene Descartes. It 1i% probably one of ﬁhe most signifi- - ’
- cant scientific contributions ever made. Today We still spea k of *, o J

~ .
rectangular coordinates (as in Section 1) as Cartesian coordinates 2.

!

There are‘three main types of problems about graphs. !

(1) Given an algebraic statement what can be said about 7
) ;its graph? ‘ ) ‘ ' .'4b,
';' :(2) Given an algebraic statement, draw its graph ,~‘ ’ Té
‘f. (3). Given a set of points, what is an algebraic statement o "’j
,“ Tl o WhicH—FE T3 ‘the “grapn? s e T e _ g
‘We can give ansgers to these questions in many simple cases. "
ln ansyeping/the,question as to what can be said about ~the
‘graph o;»an algebraic statement we desire an answer in set ) . S
langhage, i. e., a description of a 'set of’ points.. In (2) we
desire an actual picture or drawing of the graph where possible.
Note that there are two considerations in’ deciding whether a
. \, “particular set M of points 18 the graph of an al statement. .
B _a) Do the coordinates of every paint in tszf;:ii;:hgke the  °
o algebraic statement true? : ‘ ' '
- QE) Is every point whosefcoordinates:make the algebraic T, "
. statement true in the‘particular set M of points? ' e

Let us consider a few elementary examples. -7
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‘(1) x > 0. The graph is, by definition, the set of all

points for which x is positive. This will be the set of all
points to the right of the y-axis.
(3)7 Any point to the right of the y-axis has the

property that it's quoordiﬁdte 1s positive.

- (b) Every point whose y-cogrdinate =
| %

. (b)
- be to the right of the y-axis.

| 107 X

(é), y=2.

. points for which y =

»

L]

-

v

Y

The graph is ‘the 11ne two units above the X-axis.

1

us see why. -

~ .

Y

pr point whose x-coordinate is positive must-

Let

The g}apﬁ 1s, by définition, the set of all’

(a) Every point ‘of that &1ne

- has the pgoperty éhat y 2. .

T

‘ ~

15’ 2 (which makes y = 2 g true
‘ statement) 1s on that. 1ine.

(3) x<o0andy=0,

n
+

The graph-of this statement 1s;

by

definf%ion: the set of all points for which x 1s”negat1vé ﬁnd y

1s zero. Let.us see what the graph must be. .

.
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Sy

2

" ard®x =1, x. = -T, X = 6 -2, ete. -
-l - - L

12.10

The set of points for>which x is less than zero is the set

of all points.to the left of the y-axis. Call -this set H. The

set.of points for,which y‘=~d is the x-axis. Call this set K.

The graph we seek is the set "of all pcints which-are in H and
are dlso in K; i.e., the set of points of HN K. This set is

clearly the set of points of the x- axis which are to the left of,

the y-axis. Thus we have described the graph for | .
(a) Every point in this set (HNK) has'coordinates
satisfying the algebraic statement and
(b) Every point whose coordinates satisfy the statement
1s in this set (HQK)\. _ )
, - - ) ’ ~
e o - X "

»

(¥) x = a, for a any particular real number. Examples

\

. Any point P whose coordinates make the sftatement x = a

true is a point whose coordinates are of the form (a,y).
Graphically, it is a point whose projection on the x-axis is the
Therefore the graph

point of the axis whose.x-coordinate is a.

N we ,Seek 1is the set of all points on the line perpendicular to

- =
>

If a > 0, the line

\thegﬁ-axis and "a" units away froQ the y- axis.

-

v
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is to~the right of the y-axis. If a ¢ 0, it is to the left of B
the y-axis. If a‘='0, it is the y-axis. - \

-~ L 4 - .
(5) y = Db for b any particular real number, . \
N From reasoning like that above, the graph must be a horizontal ‘
, [ . ’ .
line, b units from the x-axis, abow€, on, or below as' b is

positive, zero, or negativé'resbecx;vely.

Y Y oy

» ; = 1Y -
M . Ygl{' .
= ~ . |
. 'l \
’ - ——— }
\ .
o 1 - X '
&
; ! Y.-z ’ S
< el
’ N . - A -
Exerciges 12-2
Graph the following algebraic statements: .
%
1. x> % , — U
2. y= X~ ' i ‘
, f s . % ‘ y
30 x:*l ar)dy=2 ! . b

‘b, x=-1lory=2

5. xﬁ)O' ‘ ) S -

6. y<2and x>0

7. X'y=0

) 8.7 X oy¥\0




- f
R Rt e YK e e el ., - N P \

i .

Give elgebraic statements’ of which the following-are )

-

descriptions of their graphs, o

L]

9. The "set of points to the left ‘of the y-axis.
10. The set"of points mot in the union of the II, III, and IV'H

v
.

. Quadrants,:

11. The origin. . )
R § ~ 3

‘& . ' -

3. Graphing Techniques,

«

.

The traditional elementary way to graph an, algebraic state-

*
) ment which 1s an equation has been to "plot pointad". .Consider the
equation y = 1 + x2, for instance. We wou;dkégmpile a table as -
Y
» follows: @ . . : 7 T
. X y When x = 0O then y - 1.+40=1
a ) . .
1. 2 .When x =1 theny =1 + 12 = 2 ; ,
- 215 T v 0 «
- / - When x =2 theny=1+2°=5 * ? {

. N Y : N p—
] ’ 4  etc. " o7 . Y X
3&\\\\\h ’

Then e would graph the points (0;1)(1,2) aha (2,5) and possibly

some-others and "guess" at what other points might be on the

graph. . Fn easy examples (lige the above) We were usually right.
‘But certainly the "point plotting method leaves much to be de~
sired. It ddes not answer our fundamental questions (a) and (p)

' of the preceding section about the grébh.
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L3 ' Y.. Y .
Consider the- eguatiqp X¥ = 6 , ) .
Let us plot points.' For X = éaiﬁoesn't work ) ‘ )
x y for x =1, y = § I ’ ,
' . : -2 .
2 3 for x = 2, 2y=6
s - g % . . \ ]
. 22 1-3 y=3 * 0 i_é :4X
- ete. .
. ! .

We plot the five points whose coordinates .are given'~above. “Now qéy
!

how do we draw the graph? It is not easy ¢r obvious simply from

these considerations. e
v . ¢ )
’ So let us starl’ovep again and trysto collect information e

which will let us be regsgnably sure t@at what we will draw willz
look 1like the_ggaph bught to look. We seey answers to some or all
of the following Questions., The answers themselves are not im-
portant. It‘is-the use to- which we put the answers that is :
important. In a given problem, wWe answer the easy questions .
first and see if we then have, enough information ta help us
graph ﬁhe equation. ... .

(1) Is the equation (or §téteﬁent) oé\a type for thch we

‘already knoﬁ yhat thé"graph must be? If so, graph it and use the

othef’qﬁestiohs only as a checy.' For instance, if the equation

is x = 3 weJkpow what the graph must be. ';t Is the vertical line

r i .
3 units.to the right of the y-axis. ' S

¢+
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' (2) For whak values of x 1s there a corresponding value of .

a

y? (What is the set of a11 numbers "a" for which the graph con- )
tains a Hoint with first coordinate a"?)
Consider y/= 3 + 2x Conslder xy 6 N .

“In this equation, it 1is clear that In this equation, it. is

for any value of x there will be a clear"thaérif X = 0 then

corresponding value of y.. We can ﬁthere is gg corresponding .
see this by just looking at the value of y. If x # O then
equation. Think of supstituting | there is a corresponding: -+ -
a number for x; then y is 3 plus va1ue~of:y (for we caﬁ'then, “
twice that number. . ot solve for y). .

’

What do these observations mean graphica11y° They mean that for
,any Value of x for which there is at least one corresponding

value of'y, there will be at least one point of the graph on the
vertical 1ine determined by that value of x. By the same token,

-if there is no corresponding value of y for a particular value '

of x, then the graph can not contain any point on such vertical

line., : T - B
.' L4 i ey
Consider y = 3 + 2x. Conalder xy = 6 X, ,

The graph containgﬁ%t least one The_graph contains Do point
point on each yertical line. | on the y-axis (the 1ine
' = 3 X = 0).- The graph COntains s
.,'.. .
) at least one point- on each
other vertical line. i

~(2') The same as (2), but with§the roles of x and y/re-

versed., °*
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S (3) PFor a given value of x, how many corresponding values
"of y are there? . -

r In both of our examples, there was never more than one

« -

corresponding value of‘y for any value of x., Graphicaily, this

means, fbr our examples, that neither graph contains)two points .

on any vertical line, (An equation like &2 x2 + 1 woﬁld have

1

two points on each vertical line. For x = O, for instance, y
could be -either +1 or -1.) . )

(3!') The same as (3£ but with the roles of x and y reversed.
(4) For what values of x is y > 0? 1is y ¢ 0? For what

values of y 18 x > 0? 1is x < 0? e

7 e
Consider y = 3 + 2x, ' Consider xy = 6
¥y > O whenever 3 + 2x > O, ¥.> O whenever x > O 1
or 2x > -3 ¥y < 0 whenever x < Q.
i or x > —-%. . This means that the graph is L
! y < O whenever x ¢ - gu cog%?ined in quadrants I and
This means that the graph s’ n : .
above the x-axis for x > - %- ' .
and is below the x-axis for “
3 ) .
Xﬂ( -.-é-'. , ) = ) -
,ﬁ‘; - N . ~ . Bl ‘
i . by . )
?
- }
> . -
‘ 221 - .
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7

(5) 1If relevant, how large is y if x is a large number?" -

S How large’is x if y is a large number? . -
n/~ . Consider y = 3 + 2x. R Consider 'xy = 6.’ \ ’
/ If x is large, y is large, 1t is| If‘x is large, y must be Small, :
3 plus twice x, in Yact, close to zero. .: :e
If y is large, x must also be If y is large, x must be close
large (about half as large eé to zero. For insﬁence, if .
. , P o .
' : . = =
y)o . . x = lOO, \y '1‘660)

-

Having collected information in answering some or all oﬁ
these questions, we then have the problem of actually graphing

the equation consistent with what we have learned. .

Finally in acﬁualiy doing the graphing, we usually dp plot

« . .

some points. Then we draw the grap?.through these points on %he
basis of the other informatic? we n?ve gathered. Having drawn the

gfaph, we shculdﬂyhen check to see,that i% conforms to ‘our in-

o v , L] - *
| formation. : 7 i s -
} LT b Exercises 12-3 .
:' - i » b
| 1. Using the discussion in the text, graph y 3 + 2x. " *ﬁ@
| . L
N 2, Using the discussion in ‘the text, graph xy = 6. ’if
. - -
{ Discuss (with respect to our 5 ques{ions) and graph, .
.y =144 - L :
| l#. ‘ =I2‘;- X v" ‘ ' ’
y , . B : L -
5. y=2x ' . - : : ~
. 1
6. Xy = —]12 . -
¢ ’ -
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lt . Linear Equations.

We have already noted in Section 2 that ah equation like

X =a (or y = ha¥ a graph which is a (straight) line.

¢ Y . . . .

oy X=2< ’ In the figure to the left

, ’J. ; . a=2 % and the graph of
H\YNH: ¥, SR ‘r,d.“;r—“ —+ + X .
X = 2:% is the vertical
ys-3 - :

. * [ . line indicated. Similarly

b= - % and the“graph

of ¥ = - % is the horizontal line indicated. '
2 » - - ..

There are other equations which have graphs which are
(straight) lines, In fact any equation of the form y = mx + Db
‘has a graph which 1is 4 straight line. An example is y = 5x - 12.
From the considerations of Section- 3, even without knowing that
the graph is a straight line, we can immediately conclude that
the graph must cross each vertical line exactly once and if
m#£0 it must also *cronss each ho.rizontal' line exactly once.

iClearly the graph of the equatian y ='mx + b paseee,through
the point (0,b) for b = m < 0+ b and thus (0,b) satisfies the
equ ation. Also the graph has slope m; i.e:, if you in;rease X
']b'y k unite ¥ou increaee(y by me k units.’ We exp,lain‘: this idea

by an example.

- » &

Es

=y

Yz
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Let us consider y = 3x - 2. The point

(0, -2) is on the graph. _Ig&fkissini.*\\ ~
oo

creased from O {to 1, y is increased by

3. If x is incrpased from 1 to 1.1

then y is increased by 3 - f#-or . 3. /
. f

%

A proof.that the graph of y = mx + b is abtually a straight line
depends on equalit& of ratios of corresponding sides of similar
triangles. We'do not give the details here. :

Using the 1nformation_above, we can prove that any line

must, have an equation of the form y = mx + b or x = a. I

line 1is veftical an equation of the line is of the form
the line is not vertical then the line must intersect y-axi
at a point whose y-coordinéte we will call b, The line .must

13

intersect the line } = 1 at a point whos§§§-codrdinate'we call d.

-

Now d - b is the increase in y when x is increased from © to 1. |
The 1ine whose equation is y = (d = b) « x + b does bass through
two points on our given line, namely (0,b) and (1,d). fhergforé_~

“our given line and the line whose equation 1S y = (d - b) e X'+ b’

must be identical. Hence y = (d - b) - x + b 1s an equation of !

i
.our line. ' : ’ |

Thus we have éhown that every line has an equation of the |-

form‘y-= mx 4+ b or of the foq@ X = a. - ' ’
. $ ' B ‘\ 3
|
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Lihear Equations. An equation in x and y is sai- to be of

the first degree in x and y if it can’ be put in the fo h t -
Ax + By, + C = O where at.least one of the numbers A and B is not - »~4j
zero. We notg that x = a is of this form for 1+ X + Q- § + ( a) =0

is equivalent to X - a = O and hence to X = a. Note thag A=1 and

hence A £ 0. ' ' . |
) 4

We aiso note that y

L4 \

(-\m)x + 1 . y + (-5) =0 is equivalpﬁt to -mx +y -b =0 and

mX + b 1s of this form for

hence to ¥ = mx + b, Note that B = 1 and henceF £ .0. Thus we Q

have shown that every line is the graph of an equation of the -

\

first degree in x and y (for every line is a graph ‘of an equation
of the form y = mx + b or:x = a).. T \
Let us 1ookr t the other side of the coin. Is it true that
-every equation of the first degree in x and y has a graph which
is a (straignt) 1in\ Thé answeryis 'yes" and we proceed to \ ,
- prove the assertion'based on our earlier observations. . \
Consider Ax + BY + C =0 with at least one of A and.B not |

Zzéro. Suppese_B # 0. Then it follows ﬂrom elementary properties

of numbers that ﬁhe equations Ax + By +C=0 -
— ' ’ ‘ Sy By, = -Ax -C , Lt
} . ©oand Yy = (Pxe (F)
are equivalent. (We say that such equatioﬁs are equivalent ii{ ’ RS

they have the same solutions; i.e., provided thatéif’aqy ordered

pair of numbers (x,y) satisfies one equation it also must satisfy «

_ _— w .
. . ¢

a4 )

. i
- o -
“_ Al
/
- - o~ <
: ' 25 .

o ':;,,u_\ — o~ - — R TRt o e b M oot s o, M 3 ~
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¥

the other(s) ) Ifithe equations are equivalent they must have
LY, ST

the same graph. Thus if B A\o the graph of AX + By + C = 0 is

the graph of y = ( )x + ( ) and we have -already agreed that the

latter graph is a (straight) line:gm(we'coﬁsider (Z%).%owbe m
- WL N
—Cy . — -
and (<B) to be b). . . .

Finally we ‘ask what the situation is if B = 0. Then A £ 0

(for at Yeast one 8f A and B is not zero) and the equations

Ax +C = O, o
\. ) AJ&=—C, ’
and x = (% ) )

are equivalent. But the graph of x ( ) 1s known to be a

vertical line. Thus the graph of AXx + By + C = 0 ig a line

E

provided at least one of A and B is not zero. M !

We call an equation of the first degree in x and y a

linear equation‘beca e its graph is a line. -

Whenever an e dation is given which is equivalent to an
equation of the rm AX + By + C = 0 (A or B not zero) we know
éﬁe‘graph must e a (straight) line. We can graph the equation
by finding two points on the line and usiyg a straight edge or’
ruler "o draw the iine.' (We frequently find a third point Just

to check our arithmetic.)

Important Conclusipn. CL . - Lol e

(T ] N o

Z\ﬁj = Finally we can well ask what the significance of this point

of view is, It is monumentales

L -
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. -
Much of algebrajis a stﬁdy of'linear equations .in x aqd y.
Much of‘geometry is a study of (sﬁraight) lines, '
When we- study either (a) properties: of iines‘g; sets of

lines in geomet;y or (b) properties of lingar equations or sets
of linear equations in algebra we are really s%udying both. We
can learn about linear equations by thinking about lines. We !
can learn about lines by thinking about linear equations.

M b e AL e e

. . Exercises 12-} - ¢ "

* 1. What is the grapl?} of Ax + By + C = 0 1f A and B are both :

’

» ‘; /‘
zero and C # 0?2 s

2« What is thetgraph of Ax + By +C=03f A, B, and C are

each’ zero?a

3. Graph Yy =2x - 1 -
4. Graph y = (-1)x + 3 ’ -~ 3 '
5. Graph 3x - 2y-= 6 ' - .
6. Graph 2x + 4y = 1 » ) -
F ¥
5 . b L)
5 \ N ) ~ - \
k . - l‘ -
2y P . . ’
N . . L—\, . %
N 0 T e L 3 ° - A . ° «




) ) . Chapter 13

. . ) The Sphere o &0
- - 1. Properties. l ) S )
1 The ordinary mathematical a%straction,of the surface of & ;: '

round’ball is called a sphere (or a "2-dimensional sphere" in’

vy
|

some contexts) The sphere 1s also used'as a mathematical ab-\s

.

9.

;straction of the surface of the earth. -The fact that the surface

e

\ of the earth is somewhat uneven and 1is thoyght to be a bit

flattened at the poles is, from many" 8 of view, not important.

1;; is still useful to study tﬁe there and to regard it as an ab- .

straction of the surface of our earth. A sphere like a circle has

»

4
a center.,” In fact, given a positive number R and aﬂpoint c, the

« set of all points of space at distauce\%/from C is called the p . )

P4

sphere of radius R and center C..

Y

Consider th@ intersection of a plane and a sphere. ILf the
VintersEction is not empty then 1t might be Just one_point. In

& 4

such- case the sqhere would be tangent to the plane. This situ-
T ’ .

ation would be represented by a hard ball resting on a table.. The -«

;e

surface of the ball ‘seems to have Jjust one point in common with

., the table top. } -~




-

ABD represents & great eircle with center at C, ‘the center of

13.2 ' &

If the intersection of a plane and a sphere 1is not empty and
.- . . I3 A
contains more than one point, then it is a cirtle. One sees an

- . 1 N 4

- T -

11lustration of this by a slicing of an orange. )

R aiada

@ There is a distinction made as to whether the plane which
Q-
1ntersects the sphere contains the center of the sphere. If it
does, we call the intersection a great circle of the.sphere. If

the plane does not contain the center then we call the inter-

o W

" section a small circle. Note that the center of the sphere is

H

also the center of each of the great circles ef the sphere byt it

is_not- the centeX of any of the‘small circles of the sphere.

In the figure, PQT represents a small gfrcle with cenier at V.

the sphere. . . ' -

éiven any point X on the sphere, there is exactly one line
in space containing X and the center C. THls line must also-
1ntersect the sphere at exactly one other point., Call it Xt.
(We read it "X—prime .) Then X and X! are the endpoints of a

diameter of the sphere and are called diametrically opposite

" points. . ¢ /
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The north and_south poles represent diametrically opposite
points on the surface of the earth. The equator represents a

greq? circle. Let us no%e bwo fundamental properties of a great

L 2

circle.

Property I. Everﬁ/two distinptrgreat circles on a sphere

have ‘a non;empty Intersection and the interseey}og i_ set of

/2]
dp

two points which are diametrically opposite. -

Proof: Each great circle is the intersecfion of the sphere |
and a plane which ceytains the center of the sphere, _ The two
distinct planes which contain the great circles have the cepter
of the sphere in common. Therefore, their intersection is a line
which contains the center of thée sphere. But this line Which con-
tains the center of the sphere must intersect the sphere in
exactly two pointé which are diametrically oﬁposite. The inter-
section of the two great eircles is‘precisely the 1ntersect10n of
the sphere”and the set which is the intersect;on of the two Qlane&
Hence, the 1htersection of two distinct great c}reles is a set of -
two points which are diametrically opposite.

Property II. If A and B are any two distinct points of a .

sphere and A and éhare not\diametrically opposite, then there is

exactly one great circle of the sphere centaining A and B.

Procr*~£A B, and the center C of the sphere are not on the

samenstraight line (because A and B are not-diametrically

oppgsite), Therefore, from,Property III of Chapter 5 there is a -~
' ’ $

unique plane containing A, B, and C- But because this plane con-

tains C, it must intersect the sphere in a great circle and such

‘great circle must contain A and B. e s

/
.
> .

230
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If any other great circle contained A and B, the plane con-

taining that great circle would also contain C (of course) and we

would have two distinct planes containing A, B and C. ‘This is

* impossible and thus Property II is proved.

One of the interesting and important facts about “spheres is
that if A and B are two polnts of a sphere then the shortest path
on the sphere between A and B 1s the great circle bath from A to B.

This fact is of great significance in navigation, both in ship
sailing routes and in airline routes. ‘ -
\ o,

* We may experimentally anticipate this result by taking a -

globe and stretching a string between two points on it.

- i

e Exercises 13-1 R -
1. (a) Manc a.drawing of a sphere .
1iké that on the right. ) _ i
(b) Label % points of the - - .
equator in didmetrically
opposite pairs. o ) z
(c) Dot fn the segmfnps join- M;>

ing the diametricaliy op-
posite pairs in (b). ' %
(d) Draw two .small circles, one of which intersects the
. equator' and one of which doesn't. ‘Label tpeir centers.,
2., Draw a sphere and two great circles on thc nphere_showing’
their points of intersection to be_diametrically opposite. . S

’ ’




3.  Draw a sphere with its equator. Draw four small circies of.

the sphere each in a plane parallel to the plane of the - .
equator. = =< . . . oo .

\ - & - - -
4, Take a round ball or globe and stretch.a string between two

points én it to check the "shortest distance” fact”%bout

=

. spheres. Try this several times to help your intuition.
5. Take an orange or an apple, and slice it to show great circles

and small circles.

-

6. Explain why goling due north would be the most efficient way
_of getting to a point due north of your starting point.

7. (a) Explain why’going due east is usually not the most

' efficlent way of getting to a point which is due east

A

of your startihg point. -

>

(b) Describe special circumstances when it would be the most

efficient.

»

2. Coordinatfzation of the Sphere. :

We have seen in Chapter 12 how we could coordinatiae the
plane.* Given- two perpendicu;ar reference lines as the axes, we

could locate any point by knowing the x- and y- coordinates of

the point. . *
>

;" .- How  do we ¢oordinatiz® the surface of the earth--a sphere?

‘4

~¥

‘knowledge of the earth!'s rotation. The earth, of course,!é%
5 iy

Our ancestors set up a coordinate system. They were aided by

. ‘ .

A
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F//gznsidered to rotate on an axis--the line containing the qprth and
south poles and the cénter of the earth. "The set of pbin%s half-

way between the‘north and south poies and, on the surface is called
the equator. It turns gut that this set is & great circle. It is
reasonable tqQ use the poles and th; equatdr as reference sets in
our coordinate system. We call the greét semi-circles wh¥ch have
the north aqd soutp poles as endpoin@s the meridians, As.eacﬁ
great circlé containiﬁk the poles intersects thg_gguator in two
diametrically opposite\peints each meridian intersects the equatora

in a unique point. There is a one-to~one correspondence between_

the set of méridians and the set of points of the equator:‘ Each
: Lo . : ’
° N s y [
point of the equatgr corresponds %0 the meridian which ¢ontains

it. Furthermore, except -£for the two poles, each point of the

f§phere is on exactly one meridian, Thué if we coordinatize the

°

set of meridians we can use this coordinate to help locate the

, point. Noté, too, that if we coordinatize the equator we can
. . - ¢ - [
. consider the set of meridians to be coordinatized by use of the
‘T, ) .
one-to-one correspondence of the sat of points of the equator

-

with the set of meridians.

We have alreédy seen in Chapter 1]l how a circle can be

g0 ", |

coBrdiBatizqd in units of degree

" measure. There are several .’
M R ©

_options in some *details of how
we choose tofdo such. We can

. use numbérs from 6_to 360 using ‘.

a counter-clockwise system. N
. \\'J/J_{( L .4
N

’

L

A4

A
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L -

Or we c¢ choose 'to measure from 45E

our O point both ways to 180, one

on .

* direction being positive and the 'go E 0
¢ . R
other negative (or what is more :
gastve { . 180W

conveﬁient for the equater on

45W

the earth, one east and one webt). ‘

. - 90W
We call the coqrdinate of tl’é‘e.

meridian or which a point 1fes the
longitude of the point. - _
Many years ago 1t was decided to call the Grgenwich meridian
the zero (or prime) meridian. The dreenwich meridian 1is tl:la‘c one
which passes through a partiéular poiqt Sf/‘cl"le town of ér:egnwich,

Englandf The rest of the meridians are numbered east or west of

the Greenwich meridian. If we think of looking down at the

equator from the north pole then we would, label points of the
s ¢

.equator as 1n\the figure .above. GREENWICH

The 180°" meridian runs north and

south through the Pacifi¢ Ocean
and the eastern tip of Siberia.
It 1s u.se;hfor,@mueh of its extent

as the so-calj.ed International j

el T ST
-

Date Line.; X T o S_Jl?,( 3

Now to locate a point on a-sphere if we have poles and

.

meridians selected we néed to know both what ‘meridian the point is
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\

on and how far above or below the

equator theﬁﬁbint is. The "natural"

way to measure "distance" above or -
helow the equator is in terms, of arc ‘v .
-~ y

length, on the meridian. And this is T SR

what is.ehstomarily done. ’ L

The portion'of a meridian from the equator to elther pole is a

quarter of a circle. ifr the point on the equator is 1dent1f1ed

as the zero point on this quarter circle then the pole would be a

90 (degree) point and each other point would-have a-coordinate———

(called its latitude) between O and 90 and north or south as the,

pole 1s north or South, The set of all points with latitude

equal to say 45 north is a small circle on the'sphere. The plane

containing this circle is-parallel to the plane of the equator

--hence the expression "parallels of latitude". ) |
The north and south poles, eqqator\Klongitude and Jatitude

N

coordinatization of the sphere is used by mathematicians in many
contexts quite‘apart from those reldted to the surface of the

earth. It just happens to ‘be the case.that this ezetem is about

as simpLe, convenient, and useful as any that can be set up.

. One«of the 1nterest1ng aspects of our coordinatization of (
the sphere is that, except at Ehe poles,,"lpcallyf it'is similar % |
to the coordinatization of a plane. What we mean°by "locally" 1is

that one can choose to think of only a smhll'pbrtion‘gg the sphere.
Then the meridians are l2ke vertical lines and the parallels of

i

latitude are like horizZontal lines. ’

. . o . , -




«

1.

2.

-3e

5.

. g
using arc length aldngsmeridians from the south pole.

" 13.9 .
. . .
Exercises 13-2

Describe the set of points of the sphere which have exactly

e

two different longitudes (as we have described it)
What is the set of points of the sphere each of which has.‘

P

more than two longitudes?

\

What is the set of points of the sphere wrich have. more than
one latitude? ‘ /\ ,
Draw a sphere with an equator and with a meridian to represent

the Greenwich meridian. On your drawing label the following

peints: iy f
. P:- (0 E, 85 N) .
. Q: . (45 W, 110 S) .

' R: . (90 W, 90 §) |
" s: (180 E, O N) :
T: " (25 E, 25 N) - . , . .

i i
Consider a different coordinaxization‘qf the spherezﬁs' 3

i o=
K
-

follows: N §:j .

-

< .
The set of meridians is to be coordinatized as before.

The parallels of latitude are to be numbered starting

from the south pole as zero, with the north pole as 180 and

ﬁvery point of the eguator woq\f have "latitude" .
Every point in the northern hemisphere would have "latitude"

greater than and less than ___ .

-
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& : *
3. The Volume of a Spherical Ball and the Area of a Sphere.

In.this section wWe try to give some understanding of the

formulas for volume and surface area of

a sphere,

As in other

contexts the volume of .a sphere refers to the volume of the

portion (region) of space bounded by the sphere. The surface
area of the sphere is the area of the spHere itseif.
of practical problems, the volume can be regarded as the amount
of sand it would take %o fill up a spherical ball whereas the

area can be regarded-as the amount of surface to be covered in

painting the sphere.

We develop the volume formula first.

the surface area formula, “Lettud .. -/
e

think of a sphé“e~cdntained in the

1nterior of a cylinder which Just

fits around it. Let R be the radfus

of the sphere. Then the:height of

the base is R. ~Let VS be the volume

of the .sphere and V the v61ume of
the cylinder. Thus Vs < V and we
expect Vs to be considerably less

%t

. ‘iv‘i\\““*‘““« A

PO
,

In terms

From it we shall get

o \:

LR/

than' VC. In Chapter 11, we have’'developed the ‘formula

Ve

=B - H= (7 R%)(2R) = 2rRS.

Therefore the volume of the top half of the cylinder is wR3.

seek the volume of the top half of the sphere--i.e., of the

northern hemisphere. The volume of the sphere is twice that of

the top half.

.




- the area ofathe smaller is

13.11 . . ',

=N ° .
Think of a plane parallel to the base of the -cylinder which. ~

cuts thfough the cylinder and the sphgre at a_dist ce of h units

above the equator. Then the area of the circular gpegion cut out

B& the cylinder is rRz. The area of the cir region cut out

by the sphere is wrz‘(if r is the radius of the small circle on .

Pl

the sphere). (See the, triangle in the figure on the preceding

page.) But r2f4 he

r2 = Rz/- h2. Therefore the area

= R2 by the Pythagorean Theorem. Hence .

of the Yarger circular region minus

. 7R - mr° = TR® - 'rr(R2 - n?)

sz - rR2 + whz

A

. ¢ '
This means that the cross section,A;ea of the part of the cylinder .

region of the plane inside the = |
“¢ylinder and outside the sphere.

/ . - & The shaded region represents the
r ‘ -
. Now considerra cone (upside down) whose base is a circular
region of padius R and whose height 4

is R. The area of the plane section

of thig\gone h units above the vertex

is #hz since .the radlus of the Eircu-j

t

lar section at that level is h. l/'/ ‘ '
; - : ~ 3 : :
!

not in the sphere 1is exactly the cross section area of a cone as .

.

described above. Therefore it is reasonable to believe that the
. P .. ‘

§ ' :
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.

\ .

volume o M, top half of the cylinder minus the volume of the top

4

half of ere is exactly the volume of the inverted cone (for
.-

the horizonta ane sections have the correct areas)’ Note that“
while we do not actually have a cone in the figpre with the sphere
inside the cylinder, we have ‘an obJect (odd-shaped) whose volume
is %he same as. the volume of ‘the cone we have considered.

The volume of a cone 1s-§ the area of the base times tpe
height.- Hence the volume of the cone chone

1l .3
.V =3mR". Also Vg =V, - 2V, one (fpr we have two cones tb be

considered, one for the top half and one for the bottom half of '
3

) 1is %(WRZ) * R.

the cylinder). Hence Vg = 27R - 2 - %m - %«33, which is the
-] . . .

usual formula. L Lo C ‘

This is ‘a valid formula for the volume of a sphere of
radius R. Now we are in a position to Justify the formula for
the surface area of a sphere. Suppose we wish to find the volume
of rubber in a rubber ball which 1is hollo‘ﬁlnside‘and which has.
only a thin rubber coating. The volume of she spherieal_shell is
the volume of the outside sphere minus the\volume of the inside
sphere (thevolume of the 1ns1de sphere is yhe volume- of the voidv
ln the middle). Let Lo be the radius Sx\zge’outside sphere and

1 ke the radius of"‘bhe 1ns1de. Let V be the volume of the

. ) 3’ . ) S.S. . ,
spherical shell. Then . | - : : .
oo b 3 4 3 ’ T '
Vs.s. = 32~ L
j _ 3 3 ,
= (rz - )

v
o




o

i

o
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This last .formula follow;\zlcause * ‘
2 2 3 3
(r2 - r;l)(r2 + 1975 + 1) ) = r,” - g

as may be seen by multiplying the two factors on the left together.
‘But (r2 - rl) is simply;the thickness of the\shéll, l.e., the
thickness of the rubber coating. It is the outside radius mings-

the inside radius. If r, is close to r; (i.e., if we have a thin
-shell) theg the volume of the spherical shell would seem-to be

almost the surface area AS of the outside, sphere times the thick-',

ness of the shell.
: oy

Therefore we now have °

T4 2" 2
Vs.s. = 5“}(r2 - rp)(rp" + wyry 1)
Y and ®
. Voo ~Ag e (P~ 1 ) where % means "ig appfoxi-'
. S8, S 2 1" mately equal to". a ,

3

~ b 2 2 o ,
TherefoF? QS N =T (?2 + ryry + r,°) provided r, and r% are close
together. But if r, and r, are close together, then r22 aﬁd:riz

]

2 . 2 A 2 v . -
.-Thus Py  + Py + 7 ~ 3r2 . . )
Hence : A xlﬂv (30.8y~
‘ NI , s~ 73" 0 ; o .
~ ‘2 ’ »
~ hwrz . ]

| ! o

But r, is the radius -of the sphere, hence Ag X 4rr? and éﬁé'

.approximation can be made as close ;2 we want. Thus it gufns out

thétzAs = brr®, This is theé usual fQrmu}a for the surface area .

L L]

° R . ‘

\a\\\:f a sphere. *’ = C ' .
a . i g

> are close gpgeﬁhey and r22 (? r, . r2) and ryr, ate ‘close tqéether.”




Exercises 13.3

»

1. PFind the_yo}hme of a spherical grapefruit whosé "distance
around- the middle" is 18",

2. Find the amount 6} paint needed’to paint the outside of a ' .

.

' spherical tank 20! in diameter if one gallon of paint will

§

. . cover 400 square feet, . ~
‘3. PFind the volume of rubber needed to make 1000 hodllow rubber -
balls of outside diameter 3“ if the thickness of the rubber
in each ball is to be ,1". . ‘

»

, 4. Three tennis balls just fit in a c¢ylindrical can designed to r
led them, one above the other. Find the volume of the air
! - space left in a can full of three balls if the radius of a

ball is about 1 3"
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The material of this chapter wWill be néw to almost all people )
who are studying it in this text. Most of it has been. tried (in -
much its present form) in several eighth grade classes with rather
surprising success. There are a number of reasons for including

it in the\eighth grade curriculum. Among these are:

1.
,2.

— : N
matics in reducing things to their simplest.elements. )
3.. It affords other ways of.loof}ng at objects in the. . 4.
g{( world aboﬁt\us and railses fundamental cuestions ahout '
' these. R | DI
4, It illustrates types of mathematical Ggeogetrié)_reagon_.“i:
) ing and approaches to problems.-‘z> . @?gg ffg“~'; d\"“ii.;".“ t
5, It glves an 1nteresting 1nstght51nto the" meaning °§g ? ) Fga *
. dimension. L = N o @ :'/’ ~ :
. PR . ) o %éf T
s 1. 'Tetrahedrons and”Simplexes. ) - - Z gﬁ * ;'fg
oo

A geometric figure of a certain type 18 called a tetrah dron.
A tetrahedron has four vertices-which are points in Space. Thecf"”//zo
. drawings below represent tetr edrons, (Another form of the worhéﬂ
"tetrahedrohqﬂ is "tetrahedra"). . Lo - Y C

Chapter 1L -
-Non-Metric Polyhedrons

It helps develop soatial intuition and ﬁnderstanding. :\

1t’ emphasizes in another context the role of mathe-,

y &

, : %
14,1 ot




The points A, B, C, and D are .the vertices of the tetrahedron

on the left. The points P, Q, R, and S are the vertices of ‘the
one,dn the fignt. The four vefziges of a tetrahedron are not in .
the same plane., The word "tetrahédron" refers either to- the
surface of' the figure ‘or to the “sol;d“ figure; i.e., the,figuge'
1nc1uding the’ 1nterior Ain space. * From some points of view, the
distinction is not important. .Lgter we shall use the t?rm "solid
tetrahedron" when we mean the surface tpgethe;‘yith thg interior.
- We can name a tetrahegron By naming-its verticeg. We sha%l )
normally put parentheses aféund the letters like (ABGD) .or (PQRS).
Later Qe shali use this notation to mean "solid tetrahedron".
The segments KB, BC, AC, AD, BD, and TD are called the edges
‘of the tetrahedron (AECD): ﬁe sometimeé will use thé'notation
(AB) oxr (BA) to mean the edge 35 What are the edges of the T

tetrahedron (PQRS)°' \\ i o .
\ ' : '

\, | ‘
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Any three vertices of a tetrahedron are the vertices of a

- -7 -

triangle and lie in a plane. A triangle has an interior ig the
plane in which 1ts vertices lie (and in which it lies). Let us

use (ABC) to mean the trianglckﬁgc togﬁtper with its interior, In
Y S

other words, (ABC) 1s the union of AABC and its interior. The

* sets (A;ac), (ABD), (ACD),. and (BCD) are called the faces of the

tetrahedron (ABCD). What are the faces of the tei'frajledron (PQRS)?V

© You will be asked to make some models of tetrahedrons in the
exercises. In teaching, material like this to Junior high school

students, the models are likely to be considerably important.

’
Prior awareness of and facility with models should increase

l
teaching effectiveness as well as improve basic understandings.
L ad q
The easiest type of tetrahedron of which to make a model is the

N

so-called regular tetrahedron, Its'edges are all the same

-

. length. (We introduce length or measurement here only for con-
venience in making some uniform models. This chapter deals

fundamentally with ron-metre or no-measurement“ geometry ) On

*

‘a plece of cardboard or stiff paper construct an equilateral tri-

3

angle-of side 6", (You can do this with a ruler and compass or

LY

with a rulerand protractor.)
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N .

- Now mark the three points thag%are halfway between the various
pairs of vertices. Cnt out the large triangular region. Carefuily i
make thfee folds or creases along the segments joining the "half-
way" points. .You may use a ruler or other straightedge to help you
make these_fSIds. Your eriginal triangular.region now looks like
four smaller triangular reglons. Bring the original three

vertices together above the center of the middle triangle. Fasten

the 1o$se edges together with tape or paper and paste. You now

-
.

have a model of a regular tetrahedron. .
. / .

- ! 4

How do we make a model of- a tetrahedron which is not a
~.reguiar one? <Cut any triangular region‘gut of cardboard or heavy
‘ paper. Use thie as\thé-base of your modei. Label its vertices A,
B;'and C. Cut out another triangle with one of its edges the
same length as Iﬁ Now, with tape, fasten these two triangles*
together along edges of equal length. Use egge (AB) for this, fqr
instance. Two of the vertices of the second triangle are now con- | \_
sideredﬁgabeled A and B._ Label the other vertex of the second -
triangle D. Cut out a third triangular region with one edge the
iength of D and another the length of AC. Do not make the angle
between these edges too large or too small. Now, hith tape,; ‘
fasten these edges ‘of the third triangle to AD and AC so that the,
tg%ee triangles fit together 1in, space. The model yod have«con—
x\structed‘so far wil} 1ook something like a conical drinking cup '
\if you hold the vertex A at the bottom, finally ¢ut out a o \‘
X . - L P AP

Al
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triangular region which will jJust fit the top, fasten it to the

top and you will have your tetrahedron.

. -,

\ ¢ > L]

. Exercises 14-1a. *

N . .

1. Maxgka cardboard or heavy paper model of a regular tetrahedron.
N TP ' @ ]

Make ¥our model so that its edges are each 3"\long.

&

2. Make a model of a tetrahedron which 1s not regular.
3. In making the third face of a non-regular tetrahedron,qrhéﬁ
difficulties would we encounter if we made‘the’angle DAC tog™

»
¢ large or too small? . %

»
-

Simplexes. A single point is probably the simplest object

or set of points you can thiﬁk\of. A set consisting of two

* points 1s probably thé/néxt most simpLd/;et of points in 8space.

But any two different points in space are on exactly one line and &

are the endpoints of exactly one segment (which is a subset of

-
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the 1line). Thusi the sét of two points hetermines two other simple,
sets in spéce: a line apd a segment. A segment-héskiength bﬁ%
does n@t have ares. We speak of a ségment or a line as Seing one-
‘aimensional. Eitherecouldlbe cénsidered aé the simplest one-di-
mensional object in space. In this chapter we want to'think

about the segment, not the line. . \

A set consisting of, three points is the next most simple set
uof points in space. What do three points in space determine? If
the three points are all on the same line, theQLwe get Just a part
of a line. We are not much better off than we were with Just two

points. Let us agree, therefore, that our thpee points are not
to be on the same line. Thus there*is exactly oene plane contain-
iﬂ% the three points and thgre is exactly one triangle with thé
three points as vertices. There is also exactly one triénguiar
region which together with the triangle which bgunds it, has the
SA three points as vertices. This mathematical object,. the triangle, =
together with its 1nter§br, is what welwant fo think about. It :
has area and it 1is two-dimensiogal. It can be considered aé the

simplest.two-dimensional object in space.

3. - PR . yon T st . N .a,‘_’ﬁ, . e
' N ,e '
-, 5 aue
f Q v
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‘It seems* rathery clear that the next most simple set of points
in space would be a set of sfour points. If the four points were N~

all in oﬁe plane then the flgure determined by the four points
. ‘ - . ’-
would apparently also\pe ik\gne plane. We want ‘to require that

the four polnts are not all in any one plane. Thig requirement

Y

also guarantees us that no three can be on a line. (If any three
were on a line thep\Fhere would'be a plane conﬁgining that line
and the fourth’ point and the four points would be in the same -

plane.) We have four points in space, then, not all in the same
(-]

plane. Clearly, this sugges§s a tetrahedron. The four.points in
space are the veftices of exactly one‘(solid) tetrahganon. A

-

solid tetrahedron has volume and it is three-dimensional. ét can

be considered as the simplest three dimensional object 1n space.
Here we have four objects each of “which may be thought_ of as

the simplest of 1tsxind. There 7re-remgrkable similarities amoﬁg

these objects. They all ought to’/have names thdt sound alike and

' remind us of thelr basic bfbperties. We ‘calll each of these a

‘-

simplex, We tell them apart by labelingaeach with its natural

» Gimension. Thus a "set consisting of a single point 1s called a
O-simplex. A segment is called al- simplex. A triangle together
with 1t8 iritérior 1s called a.2 simplex. A solid tetrahedron is

called a 3-simplex. : ‘ . 4,

. . ° . - w
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*Let us make up a table.to hglp us'keep these ideas in order:,, .
. . L. - . Pk ~
‘ %ﬂb

A set consistingpbf: determines. -~ which 1s called‘ax
i one point one point (itself) 0-simplex o
JLwo points 4 segment l-simplex ‘ ¢
"three points a triangle together '2-simp1ex
not all’ on~ with 1ts interior * .
» any one line :
3 four points a solid tetrahedron .  3-simplex .
v not all on (which includes 4its ) ' .
. ) any one plane 'interior) ‘ N . .
~ There 1§ another way to think about tie_dimension of these '

H
_ sets. «In this we think of thé notion of betweenness, of .a point

being betWeen two other points. .. N :

a

.« .Let us start with two points. Consider these‘two points and -

N all points between them. We now have a segnment. ’ Now take the

1

‘. ' segment together with all points which are bétween any two N

LN
points of the segment, We stf&l have the same segment. No new . ;

points were obtained by "taking points~between again... The.

{ process of "taking pofnts between needed‘to be used Just pnce.‘J,» e s s

-
]

*D We get. a one- dimensional ﬁet a I- simplex.

-’
T~

Next consider three points not all on the same line. Then

\

let us apply our- process. We tahe theéﬁ points together with all

"points which are between any two of them. , At this stage we have i

1}
\ f
s
s’

a tr}hngie but not.its interior. We apply the process again.
We take the set we aiready~have (the triangle)wtogether with all
-
& points which are between gﬁ& two points of this sets” We*get the

3

fe

‘ -
Y . . o, s o
‘
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_union -6f the triangle and its interior. ° If we apply the process

t

“again we don't get anything new.. We need use the process Just

twice. We- get a two-dimensional set, a 2- simplex.
. . - &
A . ' « A ) - -
. - first second ¢

process ) pirocess

@ ) . v <

Next_let us consider four points not all on the same plane.

We apply the process of "taking points between" and get the union
e )

of the edges of a tetrahedron. “We apply the process again and’gét
"the ‘union of the faces. We applyﬁit once more and get the solid
tetrahedron itself, We apply it again.and 8till get just the

solid tetrahedron.’ We.need use the process just three times. Ve«

get a'three-dimensibnal set, a 3-simplex. & . P

. If we had just one point,. the applicatidnlof the"process
.+ would still leave us with Just the one point. .We need apply the -

H

process zero times. We get a zero- dimensional set, a 0 simplex.

(We mention this case last because we have to understand the

Ev ~ process befope it can make much sensd.) A " R
. dFinaily, et us consider a 3-simplex. Look at one of your .
: “mo ;&gﬂg;ftetrahedrons. It has four faces and each face 1s a 2-
N sim lex. It has.six edges and each edge i8 a 1- simplex., It has
four vertices and each vertex is a 0- simplex. : . o -

3 L3
s L5 e . :

-~ -
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. Exercises .14-1b A PN

1. (a}l'A 2-simplex has how.many l-simplexes as edges?

(v) It has how many O-simplexes as vertices? . ) -

2. A l-simplex has hew many O-simplexes as.vertices? . '
.. v * . 'Y
3. Using models show how two 3-simplexes can have an inter-
"section #which is exactly a vertex of each. ° N

« ¢ . . 0]
4, Using models show how two 3-simplexes can have an inter-

section which is exactly an edge of each.
5. In this and the next problem you are asked to do a bit of.
coloring. Mark three points not all on the Same line in blue.’

Color red all points which are between any two of these. .
. . . .

Shade green all points which are between any two of the ’

' k4

points aiready colored.k Should there be any points which

are not colored and are betweeh two of the colored points°

-

Starting with the three points how many times did you need

~  to. use tne process of "tgking pointsvbetWeen before you were .

"
. . -

» . L. . 7.
o finished” R _ e T » - A L‘_\,J VO

- N oo M
6. Use.your model6f 2 non- regular tetrahedro Color its

veptices blue. Color red the set of, 911 points each of which

is between two of the"ertices. Color green the set of all

*. Y1777 points each of which is between of the red or blué

‘colored .points. Xou should*now have ytour model colored..,
'What 1s“the set of all points which either are colored or

t are between two of your colored points?

S .
R y P \ i
P .
~ . »
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2. Polyhedrons. / ' ) : ‘
Models of Cubes. Most of you 'know that 1f'you want. 'to make

‘an ordinary box you need six rectangular faces for it. They have : ©
to- fit and you have to put them together right. There 15 a

rather easy way to make a model of a cube.
we .o ‘

v

N
. . .
. ~ t

ey N o
[

Draw six équareg on heavy paper or cardboard as'iA the
drawing above., Cut around the boundary of your figure and fold
(or crease) along the dotted lines. Use cellulose tape or paste ;

to fasten-1it together. If you are, going to ‘use paste it will- be

necessary-to have flaps as 1nd1eated in the drawing.below. i .
) = ” &
( Y
! i '
[}
o‘ ‘
]
[}
ot e e - 5 P R Y .
) ,: : = - ~een
‘ L {
kJ ') > *
|

T

You will be asked to make two models of-a cube in the_ A;'ﬁ
‘ . T ) - ‘l N

exerclises. . X
aq . { .
to “ ) [
e '
// -
T - 252 ,
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. Can-the surface of a cube be regarded aS the union of °

2-simplexes (that I's, of triangles togetﬁ%% with their interidrs)? j"

Can a solid cube be regarded as the union of 3- simplexes (that is
of solid tetrahedrons)?

l

The answer to both of these questions is
’ * L

, 1 .

"yes". We, shall explain one way of thinking about these questions.

' .

r

Each face of a cube can be considered to be the union of two
2-simplexes. The drawing oh the left beIow shows a cube with

three of 1its faces subdivided into two 2 simplexes each. The face .

ABCD appears as the urilon of (ABC) and (ACD) for example. The
other faces whiclefe indicated as subdivided are CDEF and ADEH.

We can think of each of the other faées as the union of two’
! l

Thus the surface of the cube can be thought of as
the union of twelve 2- simplexes,

2-simplexes.

yi

H E . .
|
'/ A~ = ‘IIL,“ D /// ‘. b Ao ®
“"‘ p (;«' .
e
T ‘ - q
N oia N I A '
v,.,].,;m__...-—w‘-""/ / [
B c & . P
——,

. With theé -surface regarded as the‘ugion‘of 2-simplexes we "~ -

may regard the solid cube as the union of 3-simplexes (solid

tetrahedrons) as follows. Let P be any point in the interior of

the cube. For any 2-simplex on the surface, (ABC), for example,
x
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" (PABC) is a 3-simplex. In the figuré on the right above, P ig ’

indicated as inside the cube. Tha l-simplexes (PA), (PB), and

(?Q) would also be inside the cube. .fhus with twelve 2-simplexes

on'the surface, we w?uld have tw;lve°3-simplexes whose union would

be the cube. The solid cupe is the union of 3-simplexea in this

nice way. . b o . .

Now we ask another question: Do ybu suppose thak a 3-simplex

can be regarded as the union of a certain (finite) number of

solid cubes? Can we'find solid cubéé that will fit together to °

fill up a 3-simplex? The answer to these questions is néi T

Suppose cubes could be fitted togetherwto £ill up a 3=$1mpléx. . -

Then anf face of the 3-simplex would be filled up by square !

.regions which are faces of the cubes. [The square regigns have ’

4

'right angles at their vertices. Any face of a 3-simpléx is tri-

angular. At least two of the angles ofga triangle must be less ‘ ”» -

than a right.anéle. Therefore the" square regions cannot fit. A

: ' N & , .

3-simplex cannot be a finite union of cubes. ’ )
> . - /X ~ .

‘
A4 .. .

Exercises B e I T \wqw

f‘f°’
“ Make two models of cubes out of cardboard or heavy paper.

¥

—.  Make them with each ,edge 2! lomg.-, .. r{_\ S T

1 ! A

2. On one of youffmodels,'without adding any other vertices,

draw segménts to express the surface of the cubé as a union

of 2-simplexes. Label all the verticed on the model




¢

14,14 -

-

¢ . o R . .
A, B,zc,,b, E, F, G, and H. Think of a point P in the .

interior of the cube., Using this point and the vertices of
) .
the 2-simplexes on the surface list the twelve 3—simp;exés .

whose union 1s the solid cube. o

gn the same cupé as in problem 2, mark a point in the centgr

of each face. {Each should be on one ‘of the segments you drew
in problem 2.) Draw segmentd to indicate the surface of the

cube a8 the union of 2-simplexes uéing as vartices tﬁe

vertices of ghe cube,and these six new points you have
marked. The surface is now expressed as the union of how
¢

many 2-simplex&s?

¥

Think about a polyhedron formed by putting a squére-baefd .,

pyramid on each face of a.cube. . The surface~of this new

.

polyhedroﬁ has how many triangular faces? Can you compare .

s

this new polyhedron vertex\fbr‘vertex, edg® for edge, and

5-simplex for 2-simplex with the surface &f the cube sub-.”

divided into 2-simplexes as in problem 3? C A

-

“\ ) - “

\ . . T

k - o :
-+ . Polyhedrons. A ngiyhedron is the wiion of a finite number of
e ~ T Y . . ‘*‘;\ ) : .

S éiﬁplexeéi Ipygohld~beyjdst one simplex, or maybe the union of

“8evén simplekes; or maybe of 7,000,000 simpléxes. What we are

~

saying is that it is the union of some particular number of

sgmplexes. In the previous section, we observed that a solid cube,

PN
s R

> ] . ~
H
'

f

“ 3

I

(]

LA
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of twelve 3-simplexes. The figures

belew represeht the unions of simplexes.

’ . ’ -

-
TIA

(222

TNy,

{2
(2

’ ¢ . - V
The figure on the left represents a union of .& 1- simplex and ,
a 2-simplex which does not contain the 1~simp1ex. It is there-
fore of mixed dimension. In what follows, we shall not be con- )
cerned with polyhedrons (or polyhedra) of mixed dimension. v

We
. 4 .
assume a polyhedron is the union of simplexes of the same

dimension. We shall speak of a 3-dimensiondl polyhedron as one

which is the union of 3-simplexes. A 2-dimensional polyhedron is

‘one whicll is the union of 2-simplexes. A l-dimensional, poly-

.hedron 1s one which is the union of l-simplexes., (Any finite set

of points éﬂﬁld be thought of as a O-dimensional polyhedron but .

-~ wWe won't be dealing with such here ) ‘ . . *

0

- . The figure on the right abowe represents a polyhedron which --

-

seems to be the union of two 2-simplexes (triangular regions) but

o

’ they don't intersect nicely. We prefer to think of a polyhedron

as the union of simplexes which intersect nicely as in the middlei
. - ) = - ’v'§

" 1
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igures, Just what do we mean by simplexes intersecting

-

: el¥? There is an'easy explanation for it. If two simplexes

of the same dimension intersect nicely, thensghe intersection must
be a face, or an edgé, or’a vertex of each. Mathematicians wouid/,,
say that they intemsect "simplicially"; i.e., in a s;Lsimplq; of
eath. ‘

Let us look more clésely at the union of simplexes which do
not intersect nicely. In the figure
on the right the 2-%implexes (DEF) .
and (HJK) have just the ﬁoint H in '
common. Thé} do not intersect niéely.

While H is a vertex of (HJK), it is

not of (DEF). However, the polyhedron

e

which is the union of these two 2-simplexes

1s also the union of thre¢’ 2-simplexes

°

which do’ intersect nicely, namely, (DEH), - (DHF), and (HJK).

The figure on the left

9

represents the un;on of the
<)

. " 2-simplexes -(ABC) and (PQR).
They do not intersect nicely.

Their intersection seems to be

a quadrilateral together with

. . its interior. &,
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On the right we have indicated : ¢ *

[

how tHe same set of points (the
same polyhedron) can ‘be considered

to be a finite union of 2-simplexes

which do intersect nicely. The

.~ polyhedron is the union of the

“elght 2-simplexes, (ACZ), (CZY),

£ 4 < -
~ ’(PZW), (XYZ'): (WXZ), (BWVX), .(XYR):
and (YQR). Z i
These examples suggest a fact about polyhedrons. If a poly-

hedron is the union of simplexes which intersect any way at all

k-

~Lthen the saﬁe set of points (the same polyhedron) is also the

-

_ union of simplexes which intersect nicely. Except for the exer-

ciseg at the end of this sectione’we shall always deal with unions
of simplexes whick intersect nicelf. We will regard a polyhedron‘
' qs\baviﬁg associated with it a particular set “of simplexes whitch
_ infrsect nicely and whose union 1§ is. When we say the word.

"polyhédrbn", we understand the simplexés to be there. ; 4

-

Is.a solid cube a polyhedron, that is, is it a unioﬁ of
3-simplexes? We have already deen that it 1s. Is a solid prism ’
a po}yhedron? Ié a solid square-based,pyfémid? The answer to‘ /
A'all bf the§@<questionsfis yés. In fact, any‘éplid object: each qu
of whose faces is flat (that is, whose surface does not contain J:

-
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any curved portion) 1is a 3-dimensional polyhedron. It can be ex-
pressed as the unie;\of 3—simp1exes. v
As examples let us look at a solid pyramid and a prism with .

" a triangular base, . . .

¢ In the figure on the left the solid pyramid is the union of,\g

4

the two 3- simplexes (ABCE) and (ACDE) The figure in the middle *
ﬂrepresents a solid prism with 2 triangular base, The”prismghas“ ¥
, three rectangular faces. Its bases are (PQR) and (XYZ) Here we
see how it may be expressed as the union of eight~3-simplexes.e o
We use the same device we used for the solid cube. First we
‘think,étout the surface es the‘union of 2-simplexes. We already
have theé bas:Z as 2-simplexes. Then we think of each rectangular ‘
face as the union of two 2&simplexes., In the figure~on the right ' '
above the face YZRQ 1s indicated as the union of (YZQ) and (QRZ), .
for instance. Now think about a- point' F in the interiér of the -

prism. The 3-simplex (FQRZ) 1s one of eight 3-Simplexes each with-
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with F as a vertex and whose union-is the solid prism. In the

I

exercises you will be ésked to name the othszw::?en.

Finally, how do we express a solid prfsm wtth a non-triangular

base as a 3-dimensional polyhedron (that is, as.é_union of )
3-simplexes with nice intersections)? We use a little trick. We
first express the baséyas a union of 2-simp1gxes and tﬁprgfore )
the solid prism as a union of triangular solid priéms. A;d w;

saﬁ then express each triangular solid'prism as the union of eight
3-simplexes. We can do this in such a way that all the simpfkfei’

intersect nicely.

~
There is a moral to our stery here. To QO a hafder-lookiné
problem, we first try to brea& it up into a-lot of e§sy problems
each of wh}ch we already knoW how to do (or at least are aBTS to
do). ' .
' ‘ . .o . ‘
: (A : | *

. ’ .¥. Exercises 14-2p
- l. Draw two 2-simp1exés whose intersection is one point and-

g
L4

(a) 1s a vertex of each, ' T TN et

4 ~ae . T

’ i
¢(b) is a vertex of one but’nét of the other.

2. Draw thinee 2-simplexes which intersects nicely and whose union

rd
is itself a 2-gimplex. " (Hint: start with a 2-simplex’ as the
union and éubq1v1de it.) L

—
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3. You are asked to dr;ﬁ‘var us 2-dimensional polyhedréns each

as the union of six 2-simplexes. Draw one such that

- ' s

~ .. (a) No_ two of the 2-simplexes intersect.

(b) There is one point common to all the 2-simplexes but

.no other point is commoﬂ'to any ﬁair.

- ({c) _ The polyhedron is‘a Sﬁuare together with its interior. >
u./ﬁzge figure on the right represents
a polyhedron as the union of
2-simplexes withéut nice inter-
sections. Draw.a similar figure
yourgelf.ané the? draw in three
' segments to make the polyhedron
the unio? of 2-simplexes which
intersect nicely. ‘

)

5. The 2-dimensional figure on the

H

right can be expressed as a union
of -simplexes with nice inter-

L .
sections in many ways. Draw a

v

similar figure yourself. » f : .

{a) By drawing segments express it as the union of six
A2-simpl§xeé wi%hout using more vertices.' . to ~

. v
(v) By adding one vertex near the' middle (in another drawing

’

. . . .
of the figure), express the polyhedron as the union of AR

g eight 2-simplexes all having the point in the middle

<

as one vertex.,



| 14,21 ', N o
6. .(a) List eight 2- simplexes whose N -
. union is the surface of the X > v, 2
! triangular prism on the right, Y /// )
) * (The figure 1s like that used ' X
- earlier.) Lo //.: . 4
+(b) Regarding F as a poine in the -~ p '{:_: |ARS R
. ~ ;1nterior ef the prism list eight
) Q

3-simplexes (each .containing F)
whose union is the solid prism.

(¢) The triangular prism PQRXYZ is also the union of three

/¢ .
! 3-simplexes which intersect nicely. Name such if you can.

’
3

' VRt -
3. Polyhedrons of Special Dimension. .

One-Dimensional Polyhedrons. Akl-dimensional polyhedroﬁ is

the union of a certain number of 1- s;mplexes (segments)

1- dimensional polyhedron. may be COntained in a plane or. 1t may.

not be. Look at a mode},of'a tetrahedron. The union of’the

p ) i .
%dges i3 a l-dimensignal polyhedron. It 'is the union of, six

l—simplexes and-does not lie in a plane. We may think of éhe

s

figures below as representing 1- dimensional polyhedrons that do

"lie in a plane (the plane of the page).

N




T N

. . .
-

' There are two types of 1-dimensional polyhedrons witceh are

of special interest. A polygonal path is évl-dimensional poly-
hedron in which the i simplexes can be considered to be arranged
in order as follows. There 1is a.first one and there is a last
one. Each other l-simplex of the polygonal paqﬁ has one vertex
in commbn with the l;simpiex’which precedes it and'one‘vertek in
common with the l-simplex which follows it. There aﬁ% no extra

:intersections., The first and last vertices (pointp)'of the poly-

. gonal path are called’the endpoints.

Neither of the l-dimensional -polyhedrons in the figures

" above is a polygonal path. Buf each contains many polygonal paths.
The union of (AB), (BC), (cD), (DG) and (GH) is a polygonal path
from A to H. The union of (JD) and (DE) is a polygonal path from

J to E and consists of ‘just two 1- simplexes.

. v

In the drawing on the right of a
‘{:etrahe'drorl:, the union of (PQj, (eR),
, and (R%)' is a pol'ygonal‘ path from P 'to

(with endpoints P and S). The
1- simpIéx (PS) is itself a. polygonal
path from P to S, Consider the.
*1l-dimensional poiyhedfon‘which is the
union of the edges of the‘tetrahedron.

Find three other polygonal paths from -

P.to S in 1it. (Use a model if it helps

T
y -

you see it.) ’ ‘ - .

' . L

“ ke meeaala i
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‘polygon. But it contains exactly _ )

14,23 ° S

i

The union of two polygonal paths that have exactly their
en&poipts in common is called a simple closed polygon (it is also

a simple closed, curve). Another way of describing a simp}e closed
golygon is to say that is 1; a l-dimensional poiyhedyon which 1is
in one piece and has the property thét every vertex of it is in
exactly two 1l-simplexes of 1t. A b

The i-dimensfbnal pol&hedron on

the right is not a simple closed 8

one gimple chpsed polygon, namely ¢
the union of {AB), (BC), (CD),
and (DA).

S

c ’ D ) The union of the édges of the cube

in the drawing on the left is a

4 -

£ - i l-dimensional polyhedqgn. It:

|

t

| .
}_ . contains many simple closed

H ) '

N

// )
A G (aB), (BE), (EG), and (GA).

Another 1s the union of (AB), (BC),

polygons. One 18 the union of

. ) . ‘ )
(cp), (DE), (EG), and (GA). Can you glve at least two more
simple closed polygons coﬁtaining (BE) and (GA)? (Use a model ’

if 1t helps you see 1it.) B

- .
B
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There is one véry easy relationship on any simple closed
polygog. The number éf l-simplexes (edges) is eqdal to the
number of vertices. Consider the
figure on the right.. Suppqse we
start at some vertex. Then we
take an edge containing this
vertex.f Nex% we take the other
vertéx contained 15 tﬁis edge and
then the oth;r edge containing
this secqnd'vértex. We may think‘

Ly

of numbering the vertices afd

.edges as in the figu?e. We con-
t}nue the process. We finisg*° -

with the other edge which coné%ins‘our original vertex. We sta}t
with a vertex and finish~yith‘an edge after having alternated
vertices and.edges as we go along. Thus the number of vertices
is .the same as‘the number of edges. | !

-

. Exercises 1h-3a _ ' Y

%

1. The figure on the right represenés
a l-diéénsional polyhedron. How )

. many polygonal pgths does it con-
tain.with endpoints A and B? How

many s;ﬁple closed polygons does

it cgntain?,

-
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. s (a) The union of the edges of a ;
3-simplex (solid tetrahedron)

. - Tcontains how many simple * < -
! cl&sed polygons? ' R.

(b) Name them all.

g (;) Name one that is not contained
in a plane. ‘
(Use a'modél if you wish.) ’ .
. 3. Let P and Q be vertices of a cube |
which are diametrically oppositel D i d

.

- . . each other (lower front left and

upper back right). Name three

O
oo}

. . polygonal paths from P toxQ each

of which contains all the vertices /

of the cube aﬁd is in the union of P A’
"the ‘edges. (Use a model if you.wish.) H
4, Draw a l-dimensional polyhedron.which is the union of seven
l-simplexes and contains no polygonal path conslstihg of more
than two of these simplexes. . -
5. Draw a simple closedepolygon og\;:e surface of one of your

models of a cube which intersect@fevery face and which does

‘not contain any ‘of the vertices of the cube.

N

i
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Two-Diﬁ;nsional Polyhedrons, A 2-dimensional gblyhedrgn 1s{a
“union of é-simplexeé. As stated before, we agree that thgfé-sfﬁ% ‘
plexes are to intersect nicely, that is, if two 2-simplexes inter-
gegt, then the‘interigction is.either an edge'of both, or a
: Qertex of both. There are many 2-d1mensioné} polyhedrons; some .
are .in one plane but many are not in any one plane. The surface
“of a tetrahedrgn, for instance, is‘not' in any one plane. Let.us '
first consider a few.2—d1mensioﬁal'polyhedrons in a plane. 1In
drawing 2-simplexes in a plane we shall shade their interiors.

EQery 2-dimensional polyhedron \ ‘ d
in a plane has a bouhgéry in that
plane. The boundary is itself a

l-dimensional polyhedron. The
. »

boundary may be 4s1inple( closed
polygon as in the figure on the .
. - ~

right; In the figure on the left below we have iﬁdipated a poly-
. M

hedron as the union of eight 2-simplexes. (ABC) is one of ‘them,  * o

® The boundary is the union;éf
A two simple closed bolygbns}f .
5 C’ . the inner square ang fhe outer
square. These two'polYgong
~_ Eg? ’ « do not 1nte;$§9t: ) .
) H =] . . -
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The figure on the righﬁ.represents
a 2-d1mensiéﬂa} polyhedron which is the
union of six 2-simplexes. Tﬁ; boundary
of_this polyhedron, in the plane is the
union of two simple closed polygons

which have exactly one vertex of each

in common, the point P, . R
Suppose a 2-dimensional polyhedron in the plane has a
boundary which is a simple*:losed polygon (and nothing else). Then
4the number of l-simplexes (edges) of the boundary is équal to tge
ﬂhmber of O-simplexes~(vert1cg§) of“the bouﬂdary. qug haye
alreadyqseén, in the previous section, why this must‘be trae.
Thire are many 2-dimensional polyhedronq which are not in
any one plane. The surface.of a t;trahedron 18" such a polyhedron; )
ﬁhe surface~5f a cube is another (it may be considered to be\g}-
pfesseé_qua union of ‘2-simplexes). Here we have some 2-dimen-
sionél polyhed;ons which are thmselves éurfaces'gr boundaries of

3-dimensional polyhedrons. Let us consider these two surfaces,

the surface of a tetrahedron and theé surface of a cube. .

P i) » Y
.

]
- . }.__ I
// . .
o
. 7 L «
. . ./ . ]
” .
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You may look at the drawings above or you may look at some
models (or both). Let us count the number of vertices, the
number of edges and the number of Taceslﬁ But the surface of 2
cube can be considered in,at 1east two different way§¥' We can

think of the faces as being square regions (as in the middle

figure) or we may think of each square face as subdivided into two'

2-simplexes (as in the figure on the right) We will use ¥ for
the nu’ber'of faces, E for the nufiber of edges and V for the
number of vertices. If you are counting from models and do not
Observe patterns to help you count, it is usually easier to check
things off as you go along. That is, 'mark the objects as=you
count them. ) - !

'Let us make up a table of our results.

, F - E v,
) A , \ 2N "
Surface of tetrahedron ) -9 . ‘6 2,
- p . e
Surface of Cube (square faces) . ? 2 8
L] ' ’/\ \ ’ kT
Surface of cube (two .2-simplexes 12 - ? - 9

on each square face) -

' It is not easy ﬁrom Just these threegggmmles to observe any -

nice relationship among these numbers. What we are 1ooking for is

a relationship which will be true n6t only for these 2-Qimensional
polyhedrons but also for others 1ike'these. Try and see- if you

can _guess the relationship we will be telling you about in the

\a—

. last’ section. ' ’

T
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, Exercises 14-3b

-~

Make up a table as in the text showing F, V, and E for the

‘2-dimensional polyhedrons mentioned there, .

Draw a 2-dimensional polyhedron in the plane with the

polyhedron the union of ten é-simplexes suech that

(a) its boundary is a simple closed polygon,

(b) 1ts boundary is the union of three simple closed
polygons kaving exactly one point in common,

e) 1its beundary is the union og two simple closed polygons
which do, not intersect. )

Draw a 2-dimen;iona1 Relyhedron'in‘the piéqe with’the number

of edges in the beundary. .

(a) equal go the number of)VertiéeqL IR . )

(bj one more than the number oﬁ‘tertices,

(e) twe dore than the number of vertices. . h

Draw a 2- dimensional polyhedron which 1s the union of three

2-simplexes with each pair having exactly an edge in fommon.

Do you think that there exists in the plane a polyhedron which

i3 the union of four 2- simplexes such that each pair have

exactly an edge in common? ‘ )

On one of your m?dels'of a eube, mark $ix points one at the

. {
center, of‘each face. Consider\each face to be subdivided into

four 2- simplexes ‘each having the center point as a vertex. !

P - - ©

Y

A

»
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Count F (the number of 2-simplexes), E .(the nupber of

- .
¢

.l-simplexes), and Vv (the number of O-simplexes) for this sub-
division of the whole surface. ‘Keep yaur answers for later-
*  use. ' cL i
6. Do the problem abdve without using a model and‘%ithgut doing
any actual counting. Just_figure out how many of each there

must be. For 1nstahce, there must be 14 vertices, 8 original

777

ones and 6 added ones.

-

N\

'T. 'Express the polyhedron on the

right as a union of

. .
2-simplexes which inter-

o

‘sect nicely (;n‘edges

N
orr vertices of each other).
’ ~

NN

IR

4. Three-Dimensional Polyhedrons, Simple Surfaces and the

Euler Formula.

A 3-simplex 1s one 3-dimensional polyhedron. A solid cube
is another 3-dimensional polyhedron. Any union of a certain

number of 3- simplexes is.a 3-dimensiokal polyhedron. We will

®

’assume again that the simplexes of a polyhedron intersect, nicely. ,

That is, that if two 3-simplexes intersect, the intersection is.a
2-dimensional race (2-simplex) of each or an edge (l simplex) of
each or a vertex (0 simplex) of each )

3 . -
B

e

v

o
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,Any 3- dimensional potyhedron has a surface (or boundary) in
space. This surface is 1ts€5k a 2-dimensional polyhedron. It is
/}pe union of sevenal 2-simplexes.(which intersect nicely). The
surface of the 3-didensionai poly-.
hedron represented by the draying . \ '
on the right is something of a mess. -
It consiits of the surfaces of" three A
tetrahedrons which have exacﬁly one - 4
point in common. : ) —
The simplest kinds of surfaces of 3-dimensional polyhedrons

are. called simple surfaces. The surface-of a cube and the

surface of a 3-simplex are both simb{e surfaces. There are many
others. Any surface of a 3-diﬁensional polyhedron obtained<as’
follows will be a simple surface.. Start with a solid tetrahedron.
Then faste;§:§%353r to 1t so that the iptersection of the one you-
are adding with what\zeu already have is a. face of the one yow ¢
are.adding. You may keep adding more solid tetrahedrons ir any
cgﬁhinat;on or of Eny‘size provided that each one yguiadd in turn
" intersects whag you already have in a set which 18 exactly a -
_union of one, two, or three faces ef the 3-simpiex vou are adding.

The surface of any polyhedron formed in this way will be a simple

1

surface,
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\ J ‘ .
. Group activity. Take five models @fpregular tetrahedrons of .
.-/_J

édges 3". Put marks on all four faces of one of these. Now

-

fasten each of the others in turn to’one of the markKed faces.

marked one should be in the middle and you won't see it/ény more.

. The surface of the object you have represents a simple surface.

The

°

You can see how to fasten a few more tetrahedrons
and more peculilar looking objects. Suppose it is

ever you add a sclid tetrahedron the ihtersection

on to get more
true that when- _

of what you add.

with what you already Dagve 1s one face, two faces

of the one you add.

surface. '

-

Y .
One ‘can alsoy fasten solid cubes together to get various

3-dimensional polyhedrons.

~

or three faces

The surﬁace of what you get will be a simple
~ . -

In fastening so0lid cubes in turn onto

what you éireedy have, you will alWays wind up with a, 3-dimensional

polyhedron which has a 'simple surface provided the following

condition is met. The intersection of each one you add in turn

-

with what you already have must be a set which is bounded on the

surface of tne cube you are adding by a simple closed polygon.

For efemple, the intergect

adjacent faces of the ohe you add.

Finally we fientich an 1nterésting property of simple S

surfaces,
i
Then this polygon separates the. simple surface into exactly two

Draw any simple closed polygon on a simple surface.

sets each of which is connected‘ i.e., is one pféce.

S ——————— -

RN,

-

or the union of tw

o)



LU
14

. ~ .
.A t € ©
[ 3 o ° .
c . 14.33 - ]
e Grbup activity., On the surface of oné of .the peculiar

3-dimensional polyhedrons,(with,simglquurche) that you hdve con-
* structed above, have somebody draw.any si@plé closed polygon (the
gﬁilder the petter). It need.not be in just one face. Then have
somebody else start coloring somewhere on the surface but'away
‘from the polygon. Have hiT color as much as he can without

4

crossing the polygon. Then have another person start coloring

Qitg apother 0926;/at any prez}ously uncolored place. Color as

much as possible but do not cross the polygon, When the second

persoh has colored as much as possible, tite.whole éhrface shoﬁad
be colored: ( L. ; A
If.you den't garefully forlow the instructions for con-
structing a polyhedron with simple surface you may get a po;y-
hedron whose surface is not simple.‘ Suppose, for instance, you
fasten eight cubes.tégether as in the drawing~beiow: T%g poly-
Medron looks-sqmething 1ike a square doughnut._:Note that- in
ff%?ing the eighth one, the 1nterséc}10n of the one you are adding
with wha't y;au already have is the union of ’%wo faces which are
not adjacent. The bouédary (on the eighth cube) of the inter-
-, sectlon’is twqQ simple closed polygohs, Aot.Just one as it should
be. There are many simple closed polygons on tﬁis.surfape which
/ﬁ:'not segffate 1t at:all." The polygon J does not separate it.

The polygon K does.

e,

2 it .
/ .3 .,

®
»

[}




.colored when you

-
———
.
°
~
'
L4
-
°

\Qts
~

\\\
SN

-~

_Exercises 14-4a
Using a block of wood (with cor;ers sawed off if possible?,

draw a simple closed polygon on the surface making it inter-

-

. sect most or all of the faces of the solid.  Start cdloring at

Ve

Eome point. Do not cross the polygon. Color as much as you

ban without crossing the polygon.' When you have colored as

much as you can, start coloring with a different color on

some uncolored portion. Again color as much as you can.with-

<

¢ - ’ . 3 . .
out crossing the pplygon. -You should ha73 the whole surface
; . )
. . |
‘ﬁnisho ; - v . -’ // l
Go through the s#me procedure as in jrobJ/y 1l but with another
3~d%Pensional ‘solid. Use one of your models or another block
o; wood. Make your simple closed,polygon as complicated as

xou wish. S s B 1._ ’ .7
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Counting Vertices, Edges, and Faces—-the Euler Formula.

/// In Section 1h- 3 you were asked to do some counting. A few of
you may have discovered a relationship between F, E, and V.
Consider the tetrahedron in the figure below. Its surface is a
simple surface., What relationship can we find among the vertices,

o

edges, and faces of 1t?

N

There are the same num%er of edges and faces coming into.the
) ’ ] °
point A, three of each. One may see that on the base there are-the

same number of vertices and edges.'.We have two objects left over:
the verte@ A at the top and the fdce (BCﬁ) at the bottom. Other-
wise we havefm;tched all the edges with vertices.and faces, So

%V -E=2. Now let jus ask what would be the ‘relationship if

*

one of the faces or the|bdse wereebroken'up 1n€o Several '
2-s1mplexes. Suppose we had thie base broken up into three o o
2-simplexes 'by adding o e‘Qertex‘P'in‘tne base. The figure on

the right above illustrates this. Our counting would be the same

z ~ 1y
- PS ’ L]
¢ s A N ’ - °
TE e ag ¢ H . < w
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until we got to the base and we w0u1d be able to match the three
new l-simplexes ngch contain P with the three new 2- simplexes on-
the base. We have lost the face which 1s the base but we have

rpicf{ed up one new vertex.P. Thus the number of vertices plus the
.*number of 2- simplexes is again two more than the number® of
2o simplexes. F+V-E=2, -

" Now le% us look at a cube, We have

a drawing of one on the right. The cube /

has how'mary faces? How many edges? How

smany vertices? 1Is the sum of the number J I

of vertices and the number of fa es two 4

more than the number of edges?,

. N

see why this must be. o

‘(1) The number vertices 6n the top face is the number of

.edges cn the top face.' o,

(2) “The number .of vertices on the bottom face is the number X
L]

. &
~

of edges on the bottom face.
P L -
(3) The number of vertical faces 1S the number of vertical
. oA edges., ) . ' '

vertical faces are now used up.. We have the top and .

(4)"All the vertices and edges ave now used up. Alll the

n

- bottom faces left., .
SoF +V - Emust be 2. - , >

What would happen if each face were broken up into two 2-simplexes?

- For each face of the cube you would now have two 2-simplekee. But,
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for each face you wduld have one new l-simplex lying 1n it.

r

&ther

things are not changed. Hence F + V - E is again 2.
*® .
Then do you suppose that

Y'+—2:gppse we*HEVe any simple surface.
o 2? 1Inthe exercises you wilji- be asked to verify this
formula (which 4s known as the Euler Formula) in several otheq’

"examples. (Euler-—pronounced oiler --wds the name of a famcus

" mathematician. of the early 18th century.)

Let us now observe that the formula does not hold in general”

for surfaces which are not éiﬁple. Consider the two examples

below.

P cm— Z Z

//////@ Id

< ’ - ..
OA” . k -

In the figure on the left (the union of the two fetrahed}cns

. v

NN\

(  .having exactly the vertéx A in commén)’V + F - E ='? Count and

| See. Use models of two tetrahedrons 1f you wish. V + F - E.,
should be 3. On each tetrahedron separately the number of faces.
plus the humber of vertices minus the numbe —6r ed:Es is 2. But

-, = ,

the vertex A would have been counted twicée. So V + F is one

| less than E + 4. : : .
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The figure on the right-above is supposed to represent the
union of eight solid cu‘ﬁes as in the lasts. section. ;[‘he p0ssi‘ple‘*
‘ninth one in the.center is missing. Count ‘all the faces (of
cubes), edges and vertices which are in the surface: For this
figure V +'F - E should be 0. (As a starter, V should be 32.)-

Finally we kugt}the Euler .Formula in a more general setting. o
Suppose we have a si ple surface and it is subdivided into a ' :
number (at least three) of non-overlapping pleces. Each of these
pieces is to be bounded on the surface by a'simple closed po%ygon.

) We think of F as th€& number of these pieces. We require that if
.two‘of these pleces intersect’then the intersection be either one ‘
point or a pol&gonal'path. The number E is the number of these/7
intersections of pairs of pieces which are not Just points. The .

number V is the number of points eéch of which is contained insat
least three of‘these gieces.‘ Then F + V - E k.2 ~ -('

‘.
. .
b k!

& Exercises 1u-ub ‘ ‘ /"

3

1. Take a cardboard model of a non- regulgr tetrahedron. In each~
face add a vertex near the middle. Consiger{the face as the

- union of three 2- simplexes so forme . Give the count of the

faces,‘edges, and;vertices of the 2-simplexes on the surface.

.

How do the faces, edges, and vertices of this polyhedron
compare with those ‘of .the polyJ:dron you ge by attaching ! \
'four,regular,tetrahedrons to the four faces gf a“fifth? '

.

*
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Take a model of a cube. Subdividevié as follow8. Add one
vertex in the middle of each‘edge;’~Agd Sne_vertex in tﬁe ’
middle of/each faée. Join’ the new vertex 1p the middle of
eégélf;ce with thé eight other vertices no& on that face. .

You should have eight 2-simpiexes on eachf face, Compute F,

v apd E. Dg you get F + V - E = 27 . v .
Make an irregular subdivision of any sfmple surface into a
\number of flat piece%. Each piece should have a simple

closed pqugon as its boundary. Count F, V, and E for this

subdivision of the surface. 4 !




